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systems. the relationship between DEVS and stochastic systems was
studied in some early works [1, 13], and an extension for
Abstract stochastic DEVS with finite states was already proposed [8],

We introduce an extension of the classic Discrete Event Syghere is not a general theory nor a formal theoretic support f
tem Specification (DEVS) formalism that includes stochasti modeling general stochastic DEVS models. Stochastic mod-
features. Based on the use of Probability Spaces, the SFochals play a fundamental role in discrete event system theory.
tic DEVS specification (STDEVS) provides a formal frame- In fact, any system involving uncertainties, unpredicteil-
work for modeling and simulation of general non determin-man actions or system failures requires a non—deternanisti
istic discrete event systems. The main theoretical pragsert treatment; and computer systems and data networks match
of STDEVS are shown. We illustrate its use in a stochasticall these properties. Examples of stochastic discreteteven
oriented simulation example with the main purpose of perfor formalisms are Markov Chains, Queuing Networks [3] and
mance analysis in computer systems and data networks.  Stochastic Petri Nets [2]. These tools permit analyizing an
simulating stochastic models in several applications.
1. INTRODUCTION The first attempt to define a general DEVS—based formal-
ism for stochastic systems was reported by two of the authors

The DEVS formalism was developed by Bernard Zeigler, h K af i led S Sth d
in the mid—seventies [16, 17]. Being a general system thed! [11]. In that work, a formalism called STDEVS that made

retic based formalism, DEVS can represent all the system se ofprpbability spaces was propos_ed, and itwas shown that
whose input/output behavior can be described by sequenc e classic DEVS formghlsm ISa .pz.slr-tlcular case of STDEVS.
of events. Thus, discrete event systems modeled by Finite A weakness of the original definition of STDEVS was that
State Automatas, Petri Nets, Grafcets, Statecharts,aae., the different transitions did not definedependenprobabil-
be also represented by DEVS models [18]. Moreover, discretly SPaces as they shared their sigma—algebra. Thus, that de
time systems can be also represented by DEVS [17]. inition of STDEVS pould nqt capture the behavior of classic
The generality of DEVS converted it into a widely used PEVS models equipped with random generators at the tran-
language to describe and to simulate most classes of di§ition functions, which is the usual —but informal— praatic
crete systems. Moreover, numerical integration methoas th Way o incorporate stochastic behawor in DEVS. Also, in the
approximate continuous systems (differential equatidays) aforementloned Work, the crucial property_of closure under
DEVS models have been developped [4] and several aplic&CUPling was conjectured but not proven (this propertyesio
tions and extensions of the DEVS formalism for modelingth® usage of hierarchical model coupling).
and simulation of continuous and hybrid systems have been In this new work, we continue with the preliminary work
proposed [6, 14]. Consequently, many DEVS—based modePf [11] redefining the first idea of STDEVS proposed there
ing and simulation software tools have been deve|oped in rén order to solve the mentioned difficulties. USing a differ-
centyears [19, 15, 5, 12]. ent probability space for each transition, we prove that-cla
Our wide area of interest is the analysis, design, modelsic DEVS models that use random functions define STDEVS
ing and simulation of automated control techniques tangeti €duivalent models (a corollary of this proof is that DEVS is a
the performance optimization of computer systems and dat@articular case of STDEVS). Also, we show that the property
networks, in interaction with continuous and hybrid system Of closure under coupling holds in STDEVS. This property,
We have chosen DEVS as the tool to provide a unified framecombined with the previous one, ensures the correctness of
work for these activities, exploiting the advantages of EEV hierarchically coupling classic DEVS and STDEVS models
efficient approximation of continuous systems [4] (for elas in an arbitrary way.
sic control theory techniques representation) and DEVB-hig  In other words, in this paper we develop a complete theory
performance execution features [20, 9] (for real-time nhodeof general stochastic DEVS.
execution aims). The work is organized as follows. After recalling the prin-
Nevertheless, a drawback of DEVS is that it is only for- ciples of DEVS and Probability Spaces, Section 2. redefines
mally defined for deterministic systems which limits the the STDEVS formalism. Then, Section 3. shows that any



DEVS model where the transition functions depend on ran- DEVS models can be coupled in a modular way [17]. A
dom variables defines an equivalent STDEVS model. Thi©DEVS coupled modeN is defined by the structure:
property permits modeling STDEVS models without mak-
ing use of probability space theory and also provides a for- N = (XN, Yn, D, {Ma}, {la},{Zid}, Selecy
mal framework for conventional DEVS simulation tools that .
" where:
make use of pseudo random sequence generators. Section 4[1
shows that STDEVS is closed under coupling, and, finally, e Xy andYy are the sets of input and output values of the
Section 5. illustrates the use of the new formalism with a sim coupled model.
ulation example.

D is the set of component references, so that for each

11 DEVS Formalism d € D, My is a DEVS model.

A DEVS model [17] processes an input event trajec- e For eachd € DU{N}, Ig € (DU{N})— {d} is the set
tory and —according to that trajectory and to its own initial of influencer models on subsystem
conditions— provokes an output event trajectory. Formally
DEVS atomicmodel is defined by the following structure:

For eachi € lg, Z 4 is the translation function, where

M = (X,Y, S, 8int, Bext, A, ta), Xn— Xg ifi=N
Zg:sYi—YW ifd=N
where Y, — Xy otherwise

e X is the set of input event values, i.e., the set of all the
values that an input event can take;

Select: 2° — D is a tie—breaking function for simulta-

) neous events, that must verBelec{E) € E.
e Y is the set of output event values;
DEVS models are closed under coupling, i.e., the coupling of

e Sis the set of state values; DEVS models defines an equivalent atomic DEVS model.

e dint, Oext; A andta are functions which define the system

dynamics. 1.2. Probability Spaces

We recall here some concepts of probability spaces [7].
Each possible state(s € S) has an associatdiine advance A sample spacé of a random experiment is a set that in-
calculated by thdime advance function ta) (ta(s) : S—  cjudes all the possible outcomes of the experiment.
Dar). Thetime advancés a nonnegative real number saying  an event space (also referred sigma—fieldor sigma—
how long the system remains in a given state in absence %{Igebra) F of the sample spacBis a nonempty collection
Input events. _ made of subsets &

Thus, if the state adopts the valsieat timet, afterta(ss) A sigma—field cannot be any arbitrary collection of subsets

units of time (i.e., at timea(s;) + t) the system performs an of 5 A collection & must satisfy the following properties in
internal transition going to a new state,. The new state is  grder to constitute a sigma—field:

calculated asy = Oint(s1), wheredins (Oint : S— 9 is called
internal transition function e if F € F thenF® e ¥ (whereF°€ is the complement of
When the state goes from to s, an output event is Fin9).
roduced with valugyr = A(s1), whereA (A:S—Y) is . . o0
(F:)alledoutput functior?ll:unctif)ns)ia, Oint andg\ define thé au- o ifReyfori=1,...c thenalsd)ii € ¥
tonomous behavior of a DEVS model. Notice that sincd=° UF = S the last two conditions imply
When an input event arrives, the state changes instant#hatS< # and alsape 7.
neously. The new state value depends not only on the in- A particular sigma—field ove® is the collection of all the
put event value but also on the previous state value and theubsets 08 (25, called the power set &).
elapsed time since the last transition. If the system goes Let G be a particular collection of subsets®fThe sigma-
to the statesz at timetz and then an input event arrives field generated by;, denotedM (G), is the smallest sigma—
at timets + e with value x;, the new state is calculated as field that contains all the elements gf
1 = ext(S3,€,X1) (note thata(sz) > €). In this case, we say A pair (S, F) consisting on a sample spaS&nd a sigma
that the system performs amternal transitionFunctiondey;  field F of subsets 0Sis called a measurable space.
(Bext : Sx O x X — ) is called theexternal transition func- A probability measuré® on a measurable spacg (f) is
tion. No output event is produced during an external transi-an assignment of a real numid(F) to every membeF of
tion. the sigma-field, such th& obeys the following rules,



e Axiom1.P(F)>O0OforallF € F. Theorem 1. A DEVS model M = (X,Y, S, int, Sext, A, ta) in
. which its state change functiodg; and dex; depend dynam-
o Axiom 2.P(S) = 1. ically on a random experiment through a random variable r
o Axiom 3. If K € 7,i=1,..., are disjoint sets, then (i-€.,8int = &int (S,1) andBext = dext(s,€,X, 1)) withr € RC O"
PULR) =52, P(R) characterized by a probability measurérR= B| B € B C 2R),

) o defines an equivalent STDEVS model.
When¥ = M (G) (the sigmafield is generated from a collec-

tion G), the knowledge oP(G) with G € G defines function
P for everyF € F.

Finally, aprobability spacas defined as a triple 7, P)
consisting of a sample spaBea sigma—fieldF of subsets of
S, and a probability measufedefined for all members of .
Synthesizing, for everff € 7, P(F) expresses the probabil-
ity that the experiment produces a sampteF C S,

Proof: We shall obtain an STDEVS modeMst =
(X,Y,S, Gint, Gext, Pint, Pext, A, t&) equivalent taVp, assuming
thatX,Y, S A, taare identical foMp andMst. Thus, we only
need to findGint, Gext, Pint andPext.

We start defining the collecting s@n(s) in relation to the
sigma-algebraB of the random experiment. For each Bet
B and for each statec S, we define thémage set Gg C S
according to:

2. STDEVSDEFINITION REVISITED

A STDEVS model has the structure: §€Gsp <= Ir €B/Gint(sr) =8
Mst= (X,Y,S Gint; Gext, Pint s Poaxt, A, ta) Then, we define}‘im (s) as:
whereX,Y, S A, ta have the same definition as in DEVS. Gint () 2 {Gsg|B € B}

Gint : S— 25is a function that assigns a collection of sets o .
Gm(S) € 25 to every states. Given a states, the collection ~ Therefore, for the system being in statethe probability of
Gint(s) contains all the subsets Sfthat the next state might transition to a new state belonging®g € Gint(8) is:
belong to with a known probability, determined by a function

Pt : Sx 25— [0,1]. When the system is in stasghe proba- Pint(s,Gsg) = P(r € B)
bility that the internal transition carries it to a €8 G(s)is  Then, for each state € S, the functionP(s,-) is a prob-
calculated byPint (s, G). ability measure in the measurable spdefint(s)), being

Calling Fint(s) = M (Gint(s)) to the minimum sigma- . (s) = 0(G(s)) the minimum sigma-algebra generated by
algebra generated bgint(s), the triplet @ int(s),Pnt(S,-)) G (s). This is demonstrated by verification of the following
is a probability space for each state S. axioms:

In a similar way,Gex: : Sx Dg x X — 25, is a function that
assigns a collection of setGex(s, e x) C 25 to each triplet 1. Pnt(s,Gsp) > 0 becaus®n(s,Gsg) = P(r € B) > 0.
(s,e,x). Given a states and an elapsed time, if an event )
with valuex arrives, Gex(s, €, x) contains all the subsets &f 2. Pni(s.9) =1, givendin(s,r) € SVsT.
that the next state can belong to, with a known probability 3 | etB,,B, € 8. Then, ifGsp, NGsp, = @ = B1NBz =

calculated byPext : Sx g x X x 25— [0,1]. ©. Therefore, the following holds trun(s, Gsp, U
Calling 7ext(s,&X) = M(Gex(sex)) to the mini- Gsp,) = P(r € BiUB) = P(r € By) +P(r € Bp) =

mum sigma-algebra generated lex(s,€,X), the triplet Pt (S, Gsg, ) + Phnt (S, Gsp, )

(S Fexi(s, € X), Pext(S,€,%,-)) is a probability space for every

triplet (s, e x). So far, we obtainedj,x andPy for the STDEVS model

MsT departing from the DEVS modéllp definition and the
3 DEVS MODELS WITH FUNCTIONS randomness condition incorporate(ﬁﬁl(S,r).
' RND In the case ofGext and Pext We proceed analogously, this

We will show that a DEVS model whose transition func- t|m_e replacing the staby the triplet(s, e, x) for the analysis.
This concludes the proof.

it;onsRS gpfir;it%rrzsr)a rﬁv?lr; ;/?irelz?izlsz (gl%?\l/lé ?f(;‘(fer?t.?ﬂuis_ In the case that one (or both) of the transition functions is
9 ' y ' ‘deterministic, it can still be defined &-,r), but in such a

in first place it will be clear that STDEVS can represent ; .
. . . way that it results independent enHence, the whole pre-
any practical stochastic DEVS model defined by the usual . . . : ; . .
vious analysis remains valid. Following this reasoning th

method of using RND functions. In second place, this prOp_theorem here presented is an alternative way for demonstrat
erty allows us to define and simulate STDEVS models in a P y

very simple and straight way, getting rid of the need for gsin Ing that deterministic DEVS is a particular case of stodhast
probability spaces. 1We call B to the sigma-algebra where functi¥is defined.




STDEVS, where randomness is removed from state transition e ta(sy) = min{og | d € D}, with 0y = ta,(sq) — €q.
dynamics.
e d* = Selec{IMM(s))
3.1. Particular Case: Random Variabler with .
o Ao — Zg N(Ag(sg+)) if d* e,
N @ otherwise

Uniform Distribution
Consider now the particular case R= [0, 1]" ¢ 0" with
uniform distribution. We say that is uniformly distributed
when every component af have uniform distribution over
the intervall0, 1]:

Then, we need to obtain the probability spaces that will
represent the stochastic dynamics of the coupled model, as a
result of the stochastic behavior of its atomic components.

f~U(01), i=12,....n First, for internal transitions, we define the set—collegti
function:

This is the typical case emulated Ipgeudo-random se- Ginty (Sn) £
guence generatorsised in most of the programming lan-
guages (we will call thenRND). It is interesting to take a Where

(Ga < {&})

X
deD

look separately for this particular case given STDEVS mod- Gint (Sa+) if d=d",

els will be usually simulated usingND functions. Gd =} Gext(Sd,84,%1)  if Xg # @,
The following is then, a corollary of Theorem 1, particular- {sa} otherwise

izing STDEVS model properties when usiRiND functions

within the transition definitions. with

Corolary 1. A DEVS model in whicBin(s,r) depends on n
functions RND (i.e., ~ U (0,1)") defines a STDEVS equiva-
lent model. {

X = Zd*,d()\d*(sd*)) if d* e |d7
%) otherwise

0 ifd=d*orxg+# @,
é4 otherwise

This corollary does not need a demonstration, given it is a
particular case of Theorem 1, takifRg= [0,1]". Anyway, we
can make explicit reference of the components of the resul@nd A
ing STDEVS model. €4 = €4 +tag: (Su+) — €y
Proceeding like the general case, for eauhge set Gg € ;
" L ’ The sets G i Il have the form Gy =
G(s), the probability of transitioning from stateto a new (..(Gq {ed}'; < )%Tg(\/v&;lll)vgilfy GNVC Sy N

state belonging to the s& g will be: We also call Finy (Su) N M (G (sv)) the minimum
P (S, Gsg) = P(r € B) sigma-algebra generated @, (Sn). Then, the probabil-
’ ity measure for the internal transition processNn P, :
which turns out to be the Lebesgue Measure for th@set S x 2% — [0,1] is defined as:

4. g_llrgES\l/JgE UNDER COUPLING IN Pty (S4,Gn) 2 Py, (Sd*de*)d‘Xl;lé@Pexh(sd,édvxd,Gd)
We will show that a coupled DEVS modeN = )
(XN, YN, D, {Ma}, {la},{Zia},Seleck with Mg € {Mqg} be-  and the triplet G, Finty (SN),Phnty (SN,+)) iS @ probability
ing STDEVS atomic models for atl, defines an equivalent space.
atomic STDEVS model, thus verifying STDEVS closure un-  Similarly, for external transitions we define the set—
der coupling. collecting function:
To achieve this, we will find an atomic STDEVS model
Mst = (X,Y, SN, Ginty s Gexiy - Pty » Pexiy » A, &) defined by the Gexty (SN, €XN) 2 % (
coupling expressioil. deD
We begin defining the relationships that are shared with thgyhere
classic proof for deterministic DEVS: G {Qext(sd,éd,xd) if X4 # @,
=

e X=XN,Y =W {sa} otherwise

Ga < {&})

= ith 0. Each - i
N déo{(sd’ed)} with sy € Sy,€q € ach compo 3 _{O if X4 # @,

nent ofSy has the formsy = (..., (S4,€4), - -)- & otherwise



with

) Zna(xn) ifNElg,
o otherwise
and
€&=este

The setsGn € Ging(Sn) Will also have the formGy =
(...(Gg,{e4}),...) and will verify Gy C Sy.

Again, we definefey, (Sn,€,XN) £ M (Gexy (SN, €,XN)) the
minimum sigma-algebra generated Gy, (Sn, € Xn). Then,
the probability measure for the external transition predes
N, Pexy, : Su x 0 x X x 2% — [0,1] is defined as:

PeXN(SNaeaXNaGN): PeXH(deédvxdaed)
dixg7#©

and the triple &, Fexi, (SN, € XN), Pexy (SN, €, XN, +)) IS @ prob-
ability space.

5. EXAMPLE MODEL

We will give a simple example for a system which dynam-

ics fully depend on random experiments. Using the theo%

presented we will see that the practical DEVS represemistio

X =0,Y = {(task,out;)}

s=0¢

As = {(task,outr)}

o ta(s)=s

and the probabilistic-related elements are:
® Gint={A[t>0},A =[0)

e Pni(s,G) =Pn(sA)=1—-e,Ge Gint

As we can see the stochastic description for the inter de-
parture time of tasks is mapped directly to the functity
through the corresponding cumulative distribution fuouti
Because only internal transitions are possible, we dorgdne
to defineGext, Pext.

Nevertheless, for implementing this STDEVS mo[s}’%?
in a simulator, the probabilistic description must be tfares
into an algorithm to be evaluated into the internal traoaiti
code, representing the associated DEJ#-) function. Ac-
ording our previous definitions we define:

of the random processes are consistent with their STDEVS

specification in terms of probability spaces.
The exampleLoad Balancing ModelLBM) is a sim-

Sint (s,1) = —(1/a)log(r)

plification of a computing system that processes successivinere by means of the inverse transformation method we ob-

Tasks, consisting on the atomic model©ad Generator
(LG), Weighted BalancefWB) and twoServergS1,S2) with
no queuing policy (i.e., the Tasks arriving at a busy server a
discarded). The s§WB,S1,S2 form the subsyster@luster
(CL), a coupled model.

As we did before, transition functions will be expressed in

terms ofr ~ U (0,1), namelydint(-) = int (S, 1) anddexi(:) =
Oext(S,€,X,T).

5.1. Load Generator

Consider a system that generates a number of Tasks in the

unit time following a discrete Poisson random distributiea
ing d; themean expected departure ratecan be proven that
the inter-departure timey between taskk andk+ 1 is ex-
ponentially distributed accordirg(ox <t) = 1— e where

a=d, and Yais the mean expected value. We will assume

that LG generates only one type of task (Tasisk) which
goes out through the only output port (Pastiy). LG does
not have any inputs, thus only internal transitions are iposs
ble. The STDEVS definition for LG is:

Mg('lé = (Xasza gintv geXt’ Plnt’ PeXt’)\’ta)

where the deterministic components are:

tained an exponential distributed function making use of a
uniform distributed variable ~ U (0, 1) available as a RND()
function in most languages.

Finally, the equivalent DEVS specification for LG will be:

M[IBG = (XaYa Sa 6int766XIa )\ata)

where:
X=0
Y = {(task,out)}
S=0¢
Snt(s.1) = —(1/a)log(r)
Oext(S,€,X,1) =S
A(s) = {(task,outr)}
ta(s) =s

In this component, the next randomly calculated inter-
departure time is stored in the real valued s&tevhich is
then used by the time advance functig(s) = s to "sleep”
LG during the corresponding amount of time.

Similar reasoning can be applied for the rest of the com-
ponents, where the state values are used for storage parpose
and models are specified in a shorter way.



5.2. Weighted Balancer There is no queuing policy nor preemption defined for the
The WB component delivers the incoming tasks arrivingservers. So, if a new task arrives to a server when it is busy
at input portin, to the output port®ut; andout, based on a  processing a previous task, the arriving task is ignored.
balancing factobs € [0,1] that determines the weight rela- ~ We will give the DEVS definitiorMg' with n = 1,2 for S1
tion between both ports. Fx = 0.5 both outputs have the and S2 respectively:
same weight and therefore the outgoing load will be balanced
equiprobably. Fob; > 0.5 out; is privileged and fob; < 0.5 MB' = (XY, S B, Bt A ta)
out, is privileged, in a linear fashion. The tasks accepted be- \,here-
long to a sefl = {task,...,tasky} with mdifferent possible
tasks.
We will give the DEVS definitiorMy 8 for WB:

X=Tx{inp1},Y =T x {out}
S=Tx{0,1} x O

M\[IDVB = (XaYa Svéintaéext,)\,ta)

A(w, busyo) = (w)

The corresponding equivalent STDEVS modiéf'® can e ta(wbusyo) =0
be obtained following the same reasoning previously used fo The state is a triples = (w,busyo), wherew represents

compqnent LG. From now on, we will make use ofTheore_m 1the last task receivetusyrepresent the status of the server
and will refer only to the DEVS form of components with (if busy= 1 the server is processing a task anthiy= 0

some foLm Olf stpﬁhastlr(]: behalwor, containing RND() funC-yhe server is free) analis the time advance. For our example,
tlonﬁ In the E\gor!t ms that evaluate transitions. we haveT = {task } and only one input port and one output
Then we have: port. After receiving an evenx,,Xp) the new state will be

o X=Tx{inps},Y =T x {out,out} evaluated according:

e S=T x {outy,out} x 0§ Bext((W, busya), e, (xv,Xp),r) = (W,1,6)
with
* A(w,p,0) = (W.p)

t - W = xy,6 = —(1/b)log(r) if busy=0,
* ta(w,p,0) =0 W=wd=0—¢e if busy= 1.
The state is a triplet = (w, p,0), wherew represents the

last task receiveq is the port where that task is delivered and with r ~U(0,1). And the internal transition will be:

o is the time advance. For our examfle= {task }. After 8int (W, busyo),r) = (W, 0, c0)
receiving an eventxy,xp) the new state must be evaluated ’ ’ o
by: independent of.

6eXt((\Nv p, 0)767 (vaxp)v r) = (XVa rja O)
5.4. TheComplete M odel

with
~  Jouty ifr <bs, 7]
~ |out otherwise & /
[s1] A
Finally, the internal transition will be: S1

6im((VV, P, 0)7 r) = (\N7 pvoo)

o
=3

vd
(16 ] Al pE Hu , / )
A=)
in this case, independent of sﬂ )\/2
S2
53. Serverland Server2 o

I
The servers S1 and S2 are components that receive the____________ —___________________________ |
tasks delivered by the balancer WB. For each task receivedkigure 1. Topology of the Load Balancer Model (LBM) ex-
a server processes it demanding a service tnand sends ample.
it out to a sink, where it is recognized as a processed task.
The variables is distributed exponentially witPP(s <t) = The system is intended to show a scenario where random

1—e " and its mean expected value il variables affect all of its building components. Here, weeha



a Poisson process dominating task generation, a Uniform pro  These magnitudes are all calculated from model parame-
cess (with a latter deterministic bias) affecting the bedan ters set up for simulatiord, (mean departure rate at LG, in
ing between two servers and a Negative Exponential proTasks/secondbs (balancing factor at WB)k1,S2 (mean ser-
cess representing task servicing times at servers. Neverthvice time at S1 and S2 respectivelysecondyin the follow-
less, the implementation always rely on the use of a uniforning way:

distributed variable ~ U (0,1).

In Figure 1 the model topology is represented along with A=dr
the main model parameters and derived traffic magnitudes M =1/s1 A1 =DbsA (4)
that will be used in the Simulations section. o =1/s2 A= (1—Dbs)A

With the DEVS specification of these components and their
defined interconnections, we built the same system in two dif Now, with (1) and (4) in (2) we derive the internal loss
ferent DEVS Simulation Tools (PowerDEVS [12] and CD++ probabilities:
[15]) parameterizing them with identical values, and runse
eral simulations at different operating points for comgani Plogs — brdrsa oo — (1—bt)drs2 5)
and validation purposes. 2 1+bidsy’ T 1+ (1-bp)dse

. ) Finally, we want to express th®tal system throughpth
55. Simulation Results terms of atotal system loss probability,i2s like we did for

In order to validate results, we describe the given exampléne individual servers. So with (3) and (5) we obtain:
model by means of basic queuing theory, derive the equations

describing the system, and then compare simulation results Ploss= btPloss + (1 — bf)Poss,

against the expected theoretical values. A =A(1—Posy ©
A single server with no queuing capacity can be described

by aM/M/m/m system withm= 1 [10]. This description as-

sumes exponential inter-arrival times and exponentiaicer

times which match our case. For théhiserver we have the Effective Output Rate

parameterd; (arrival rate) and; (service rate) Thetraffic 55 ‘ ‘ ‘ ‘ ‘ ‘

intensityis defined

451

Pi = Ni/Hi (1)

Because of the limited buffering capacity (in our simplest
case, only the servicing task can be "buffered”) there is ¢

N (Tasks per second)

probability of losing tasks, which will never be servicethi§ 35
probability is denote®qsg (probability of los$ and is related
with the traffic intensity byErlang’s loss formuld10] in its % o1 o0z 03 04 05 06 07 08 09 1

bf (balance factor)

simplest form for a single server:

Task Loss Probabilities
T T T

Poss = pi/ (14 pi) (2) ol ‘
I ]
The ith server will see at its input port agffective arrival e el T T
a T~ T e
rate. ! n-.E oor — ~ Ploss:blploss +(17bf")Ploss
A = Ni(1—Ploss) 3) 0Ar Pr—— 1 i

o P\oss*’
which under stability conditiofsis equal to theserver
throughputat its output port. In our LBM example, we have .2 o2f ]
i = 1,2 for the two servers in the cluster (CL) sub-model. oaf N=10, 1125, 1125 1
Clearly, thetotal system throughpl)t’ must be\” = )\’14—)\/2
hence being a function of thetal system arrival rate\ and
the traffic intensitiep;, p2 at the servers.

. . . . i . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
bf (balance factor)

2|n lossy systems, theffective traffic intensit}oi/ = )\; /M is alwaysp; <

1 so the typical stability condition;/p; < 1 is not required. Finite buffer Figure?2. Simulation Results. Test Scenariall= 10.b; —
systems are always stable since arriving tasks are lost wigenumber of 9 ’ ’ R SR =

tasks in the system exceeds system capacity. [Oa 1]731 =02,52,=02



With equations (6) we completely characterize the sys- [3] Christos CassandraBiscrete Event Systems: Modeling

tem in terms of offered load, loss probabilities and effecti

throughput. Then, in Figure 2 we plot the theoretical curves

for Poss, Ploss  Ploss, and)’ as functions obs in atest sce-
nario 1chosena3 § = {dr = 10,bs = [0,1],51 =0.2,52 =

(4]

0.2}. In the same figure we plotted simulation results for the
STDEVS model LBM parameterized according the scenario [5] J.B. Filippi, M. Delhom, and F. Bernardi. The JDEVS

TS, at a set of illustrative operational points sweepbig
between O and 1.

It can be observed that simulation results match closely the

expected theoretical curves, for successive repetitibeach
point.

Simulation point values were derived from the output

(6]

event log files produced by simulation runs, using calcu-

latec® task ratevariables, thus obtainings™ and Plf)'g”s =

1— (A\S™/A$'m). The statistical properties of the random vari- [7]
ables produced by the atomic models were verified to match

with those expected: uniform distribution fdx;, discrete
Poisson distribution fok and exponential distribution fcg;

(8]

andsy. This also produced Poisson distributed series of val-

ues for all the observed task rates, as expected.

6. CONCLUSIONS

9]

We presented a novel formalism for describing stochas-
tic discrete event systems. Based on the system theoretical
approach of DEVS and making use of Probability Spaces,

STDEVS provides a formal framework for modeling and sim-

ulation of generalized non deterministic discrete evest sy [10]

tems.

The development of STDEVS was motivated by a wider

project aimed to provide a unified framework for modeling [11]

and simulation of automated control techniques targetieg t

performance optimization of computer systems and data net-

works; in interaction with continuous and hybrid systems.

Thus, next steps will be oriented to develop STDEVS— 12]

based libraries in PowerDEVS and CD++ for modeling and
simulation of general computer systems and data networks.
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