Introducción a la Física Nuclear 2023

Rodolfo M. Id Betan (Rolo)

idbetan@ifir-conicet.gov.ar Edificio Ifir, Of. 235 (Esmeralda y Ocampo) Tel. 4853200 Int. 486

Teoría de dispersión

Contenido:

Separación centro de masa. Canales de reacción. Sección eficaz experimental. Condición de contorno. Amplitud de dispersión. Densidad de corriente. Sección eficaz teórica. Solución de la ecuación de Schroedinger del movimiento relativo con condición de contorno de scattering. Expansión en ondas parciales. Cambio de fase. Matriz de dispersión. Expansión amplitud de dispersión en ondas parciales. Sección eficaz diferencial y total. Ejemplo. Sección eficaz de absorción. Potencial óptico. Sección eficaz total. Teorema óptico.

Definiciones

Reacciones nucleares

Crédito: Fernando Gollán

Reacciones nucleares

$$a + X \longrightarrow b + Y$$

 $X(a, b) Y$

No se conserva

<u>Se conservan</u>

 $Z_a + Z_X = Z_b + Z_Y$ $A_a + A_X = A_b + A_Y$

 $m_a + m_X \neq m_b + m_Y$

<u>Q value - Valor Q</u>

$$Q = [(m_a + m_X) - (m_b + m_Y)]c^2$$

Algunas Clasificaciones

Reacción	Ejemplo	Comentarios
Elástica A(a, a)A	208 Pb(n, n) 208 Pb	Da información de interacciones efectivas, radios y densidad
Inelástica A(a, a')A*	90 Zr(α, α') 90 Zr	Da información de transiciones electromagnéticas y deformaciones
Intercambio de carga A(a, c)C	$_{6}^{14}C(p,n)_{7}^{14}N$	Estudia el decaimiento beta y la interacción débil
Captura $A(a, \gamma)C$	${}^{16}_{8}\mathrm{O}_{8}(\alpha,\gamma){}^{20}_{10}\mathrm{Ne}_{10}$	Da información de los parámetros de las resonancias
Ruptura A(a, bc)C	$d + {}^{90}\operatorname{Zr} \rightarrow {}^{90}\operatorname{Zr}^* +$	- p + n Da información de estados ligados

Sobre los canales de reacción

Definición de canales

$$\alpha + {}^{14}N \rightarrow \begin{cases} \alpha + {}^{14}N \\ p + {}^{17}O \\ \alpha + \alpha + {}^{10}B \\ \vdots \end{cases}$$

Tratamiento de canal simple

$$\alpha + {}^{14}N \to \alpha + {}^{14}N$$

Tratamiento de canales acoplados

$$\alpha + {}^{14}N \rightarrow \begin{array}{c} \alpha + {}^{14}N \\ p + {}^{1\bar{7}}O \end{array}$$

Modelo Potential dispersión

Canales

$$\alpha + {}^{14}N \rightarrow \left\{ \begin{array}{c} \alpha + {}^{14}N \\ p \lor O \\ \alpha + + + {}^{10}B \\ \vdots \end{array} \right.$$

Dispersión de dos cuerpos

Canal Elástico

$$\alpha + {}^{14}N \to \alpha + {}^{14}N$$

Tratamiento de canales acoplados

$$\alpha + {}^{14}N \rightarrow + {}^{14}N + {}^{17}O$$

...sobre el potencial óptico...

Definición de sección eficaz

Esquema experimental

Esquema teórico

Crédito: P. Frobrich and R. Lipperheide. Theory of Nuclear Reactions

 $d\sigma = \frac{corriente\ saliente\ en\ d\Omega}{corriente\ incidente}$

Separación centro de masa

Separación del Hamiltoniano

Hamiltoniano del sistema

$$H = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + V(r)$$

Coordenadas centro de masa

Hamiltoniano separable

$$egin{array}{rcl} \mathcal{L} &=& rac{m_1 m{r}_1 + m_2 m{r}_2}{m_1 + m_2} \ &=& m{r}_1 - m{r}_2 \end{array}$$

R

r

$$H = \frac{\boldsymbol{P}^2}{2M} + h(\boldsymbol{r})$$

Masa Total
$$M = m_1 + m_2$$

$$m{P} = m{p}_1 + m{p}_2 \ m{p} = rac{m_2 m{p}_1 - m_1 m{p}_2}{m_1 + m_2}$$

<u>Hamiltoniano relativo</u>

$$h(oldsymbol{r}) = rac{oldsymbol{p}^2}{2\mu} + V(r)$$

Masa Reducida
$$\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}$$

Solución separable

Hamiltoniano del sistema

$$H = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + V(r)$$
$$H = \frac{P^2}{2M} + \frac{p^2}{2\mu} + V(r)$$

$$\Psi(\boldsymbol{r}_1, \boldsymbol{r}_2) = e^{i \boldsymbol{K} \boldsymbol{R}} \psi(\boldsymbol{r})$$

Movimiento del centro de masa

$$\frac{P^2}{2M} \to e^{iKR}$$

Movimiento relativo

$$\left[\frac{\boldsymbol{p}^2}{2\mu} + V(r)\right]\psi(\boldsymbol{r}) = E\psi(\boldsymbol{r})$$

Amplitud de dispersión

Amplitud de Dispersión

Comportamiento asintótico

Condición de contorno

Movimiento relativo

$$\begin{bmatrix} \frac{p^2}{2\mu} + V(r) \end{bmatrix} \psi(\mathbf{r}) = E\psi(\mathbf{r})$$
Autoenergía del continuo

Densidad de corriente

Densidad de corriente

Hamiltoniano

Condición de contorno

: 1

$$\begin{bmatrix} \frac{\boldsymbol{p}^2}{2\mu} + V(r) \end{bmatrix} \psi(\boldsymbol{r}) = E\psi(\boldsymbol{r}) \qquad \qquad \psi(\boldsymbol{r}) \quad \underline{r \to \infty} \quad e^{i\boldsymbol{k}\boldsymbol{r}} + f(\Omega) \frac{e^{i\kappa r}}{r}$$

Densidad de probabilidad de corriente

$$oldsymbol{j} = rac{\hbar}{2\mu i} \left(\psi^*
abla \psi - \psi
abla \psi^*
ight)$$

Densidad de corriente

Función de onda

$$\psi(\mathbf{r}) \xrightarrow{r \to \infty} e^{i\mathbf{kr}} + f(\Omega) \frac{e^{ikr}}{r}$$

Corriente

$$oldsymbol{j} = rac{\hbar}{2\mu i} \left(\psi^*
abla \psi - \psi
abla \psi^*
ight)$$

Corriente incidente

$$\boldsymbol{j}_{in} = rac{\hbar \boldsymbol{k}}{\mu} = \boldsymbol{v}$$
 The

Corriente saliente

$$j_r r^2 d\Omega \xrightarrow{r \to \infty} v |f(\Omega)|^2 d\Omega$$

Sección eficaz $d\sigma = \frac{\text{corriente saliente en } d\Omega}{\text{corriente incidente}}$

Sección eficaz

Sección eficaz diferencial

 $d\sigma(\Omega) = \frac{\text{probabilidad de corriente en } d\Omega \text{ en la dirección } \hat{r}}{\text{densidad de probabilidad de corriente incidente}}$

$$oldsymbol{j}_{in}=rac{\hbaroldsymbol{k}}{\mu}=oldsymbol{v}$$

$$j_r r^2 d\Omega \xrightarrow{r \to \infty} v |f(\Omega)|^2 d\Omega$$

$$\frac{d\sigma}{d\Omega} = \frac{j_r \, r^2}{|\boldsymbol{j}_{in}|} = |f(\Omega)|^2$$

Sección eficaz total

Sección eficaz diferencial

$$\sigma_{el} = \int d\Omega \left(\frac{d\sigma}{d\Omega}\right) = 2\pi \int_{-1}^{1} d(\cos\theta) |f(\theta)|^2$$

Siguiente paso: calcular la amplitud de dispersión Cálculo de la amplitud de dispersión :

Cambio de fase
Matriz de dispersión

Solución de la ecuación de Schroedinger

Hamiltoniano

$$\left[rac{oldsymbol{p}^2}{2\mu} + V(r)
ight]\psi(oldsymbol{r}) = E\psi(oldsymbol{r})$$

Condición de contorno

$$\psi(\mathbf{r}) \xrightarrow{r \to \infty} e^{i\mathbf{k}\mathbf{r}} + f(\Omega) \, \frac{e^{ikr}}{r}$$

Separación de variables

$$-rac{\hbar^2}{2\mu}
abla^2_{m r}=-rac{\hbar^2}{2\mu}rac{1}{r}rac{\partial^2}{\partial r^2}r+rac{m L^2}{2\mu r^2}$$

 $\begin{aligned} & \underline{Parte \ angular} \\ & L^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right] \\ & L^2 P_l(\cos \theta) = \hbar^2 l(l+1) P_l(\cos \theta) \\ & \int_{-1}^1 dx P_l(x) P_{l'}(x) = \frac{2}{2l+1} \delta_{ll'} \end{aligned}$

Solución libre

<u>Hamiltoniano</u>

$$\frac{p^{-}}{2\mu}\psi(r) = E\psi(r)$$

$$\psi(r) \qquad r \to \infty, \quad e^{ikr} + f(\Omega) \frac{e^{ikr}}{2\mu}$$

Solución

2

$$\boldsymbol{\psi}(\boldsymbol{r}) = \boldsymbol{e}^{i\,\boldsymbol{k}\cdot\boldsymbol{k}}$$

Demasiado simple para ser lo que estamos buscando!

Solución en ondas parciales $e^{i\boldsymbol{k}\boldsymbol{r}} = e^{ikr\cos\theta} = \sum_{l=0}^{\infty} (2l+1) i^{l} j_{l}(kr) P_{l}(\cos\theta)$ $\psi(\boldsymbol{r}) \xrightarrow{\boldsymbol{r} \to \infty} e^{i\boldsymbol{k}\boldsymbol{r}} + f(\boldsymbol{\Omega}) \xrightarrow{\boldsymbol{k}\boldsymbol{r}} f(\boldsymbol{\Omega}) = 0$

Solución libre

Hamiltoniano

$$\frac{p^2}{2\mu}\psi(r)=E\psi(r)$$

Solución

$$\psi(r) = i e^{ikr} = e^{ikr\cos\theta} = \sum_{l=0}^{\infty} (2l+1) i^l j_l(kr) P_l(\cos\theta)$$

Comportamiento asintótico en ondas parciales

$$j_l(kr) \xrightarrow{r \to \infty} \frac{\sin(kr - \frac{\pi}{2}l)}{kr} = i^{-l} \left[\frac{e^{ikr} - (-)^l e^{-ikr}}{2ikr} \right]$$

Superposición de dos ondas esféricas

Solución con interacción

Hamiltoniano

$\left[\frac{p^2}{2\mu} + V(r)\right]\psi(r) = E\psi(r)$

Expansión en ondas parciales

$$\psi(r, heta) = rac{1}{kr} \sum_{l=0}^{\infty} \left(2l+1\right) i^l u_l(r) P_l(\cos heta)$$

$$\psi(\mathbf{r}) \xrightarrow{r \to \infty} e^{i\mathbf{kr}} + f(\Omega) \frac{e^{ikr}}{r}$$

Parte angular

$$-\frac{\hbar^2}{2\mu}\nabla_{\pmb{r}}^2 = -\frac{\hbar^2}{2\mu}\frac{1}{r}\frac{\partial^2}{\partial r^2}r + \frac{\pmb{L}^2}{2\mu r^2}$$

Parte radial

$$\left[\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} - \frac{2\mu}{\hbar^2}V(r) + k^2\right]u_l(r) = 0$$

Solución con interacción

Hamiltoniano

Expansión en ondas parciales

$$\left[\frac{p^2}{2\mu} + V(r)\right]\psi(r) = E\psi(r)$$

$$\psi(r, heta) = rac{1}{kr} \sum_{l=0}^{\infty} \left(2l+1\right) i^l u_l(r) P_l(\cos heta)$$

Parte radial

$$\left[\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} - \frac{2\mu}{\hbar^2}V(r) + k^2\right]u_l(r) = 0$$

Comportamiento asintótico

Ondas esféricas

$$u_l(r) \xrightarrow{r \to \infty} a_l \sin(kr - \frac{\pi}{2}l + \delta_l) = a_l \left[\frac{i^{-l}e^{i\delta_l}e^{ikr} - i^l e^{-i\delta_l}e^{-ikr}}{2ikr} \right]$$

Cambio de fase

Cambio de fase

Crédito: learnpick.in/prime/documents/notes/details/4169/nuclear-physics-notes

Matriz de dispersión

Matriz de dispersion

$$\left[\frac{p^2}{2\mu} + V(r)\right]\psi(r) = E\psi(r)$$

$$u_l(r) \xrightarrow{r \to \infty} a_l \sin(kr - \frac{\pi}{2}l + \delta_l) = a_l \left[\frac{i^{-l}e^{i\delta_l}e^{ikr} - i^l e^{-i\delta_l}e^{-ikr}}{2ikr} \right]$$

Matriz de dispersión

 $S_{l}(k) = e^{2i\delta_{l}(k)}$ $u_{l}(r) \sim -i^{l} e^{-i\delta_{l}} \left[e^{-ikr} + S_{l}(k) e^{ikr} \right]$

Modifica la fase de la amplitud

Conservación de la probabilidad

 $|S_l(k)| = 1$

Cálculo de la amplitud de dispersión

Expansión de ondas parciales de la amplitud de dispersión

Expansión la exponencial
$$\psi(\mathbf{r}) \xrightarrow{\mathbf{r} \to \infty} e^{i\mathbf{k}\mathbf{r}} + f(\Omega) \frac{e^{i\mathbf{k}\mathbf{r}}}{r}$$

Amplitud de scattering en ondas parciales

$$f(heta) = \sum_{l=0}^{\infty} \left(2l+1
ight) f_l P_l(\cos heta) \quad j_l(kr) \quad \underline{r o \infty} \quad rac{\sin(kr - rac{\pi}{2}l)}{kr} = i^{-l} \left[rac{e^{ikr} - (-)^l e^{-ikr}}{2ikr}
ight]$$

Expansión en ondas parciales

$$\psi(r,\theta) = \frac{1}{kr} \sum_{l=0}^{\infty} (2l+1) i^l u_l(r) P_l(\cos\theta)$$

Usando las expresiones asintóticas

$$u_l(r) \xrightarrow{r \to \infty} a_l \sin(kr - \frac{\pi}{2}l + \delta_l) = a_l \left[\frac{i^{-l}e^{i\delta_l}e^{ikr} - i^l e^{-i\delta_l}e^{-ikr}}{2ikr} \right]$$

Coeficientes de la amplitud de dispersión

Amplitud de scattering en ondas parciales

$$f_l = rac{1}{2ik} \left(e^{2i\delta_l} - 1
ight) = rac{1}{k} e^{i\delta_l} sen \delta_l$$
 Cambio de fase $S_l(k) = e^{2i\delta_l(k)}$

Amplitud de scattering

$$f(\theta) = \sum_{l=0}^{\infty} (2l+1) f_l P_l(\cos \theta)$$

Sección eficaz diferencial y total

Sección eficaz diferencial

Sección eficaz diferencial

 $\frac{d\sigma}{d\Omega} = |f(\theta)|^2$

$$f_l = \frac{1}{2ik} \left(e^{2i\delta_l} - 1 \right) = \frac{1}{k} e^{i\delta_l} sen\delta_l$$

 $f(\theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} (2l+1) (S_l - 1) P_l(\cos \theta)$

Sección eficaz total

Sección eficaz total

$$\sigma_{el} = 2\pi \int_{-1}^{1} d(\cos\theta) \left(\frac{d\sigma}{d\Omega}\right)$$

$$rac{d\sigma}{d\Omega} = |f(heta)|^2 = rac{1}{4k^2} \left| \sum_{l=0}^{\infty} \left(2l+1
ight) \left(S_l - 1
ight) P_l(\cos heta)
ight|^2$$

$$\sigma = \frac{4\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l$$

Ejemplo

Sección eficaz diferencial elástica: Aplicación

Crédito: P. Frobrich and R. Lipperheide. Theory of Nuclear Reactions

Sección eficaz diferencial elástica: Aplicación

Crédito: P. Frobrich and R. Lipperheide. Theory of Nuclear Reactions

Potencial complejo

Potencial óptico

Potencial complejo W(r) < 0

 $V_{opt}(r) = V(r) + i W(r)$

Ecuación de Schroedinger

$$\left[-\frac{\hbar^2}{2\mu}\nabla^2 + V(r) + i W(r)\right]\psi(\boldsymbol{r}) = E \,\psi(\boldsymbol{r})$$

Ecuación de continuidad

$$\nabla \cdot \boldsymbol{j} = \frac{\hbar}{2\mu i} \left(\psi^* \nabla^2 \psi - \psi \nabla^2 \psi^* \right) = \frac{2}{\hbar} |\psi|^2 W$$
$$\nabla \cdot \boldsymbol{j} = \frac{2}{\hbar} \rho(\boldsymbol{r}) W(r) < 0$$
Pérdida de flujo

Sección eficaz de absorción

Sección eficaz de absorción

 $\sigma_a = \frac{\text{probabilidad de corriente entrante - probabilidad de corriente saliente}}{\text{densidad de probabilidad incidente}}$

Denominador

$$\boldsymbol{j}_{in} = \boldsymbol{v}$$

 $-\int_{S} d\boldsymbol{S} \cdot \boldsymbol{j}(\boldsymbol{r}) = \int d^{3}\boldsymbol{r} \,\nabla \cdot \boldsymbol{j}(\boldsymbol{r}) = -\frac{2}{\hbar} \int d^{3}\boldsymbol{r} \,\rho(\boldsymbol{r}) \,W(r)$

Sección eficaz de absorción

$$\sigma_a = -rac{2}{\hbar v}\int\,d^3m{r}\,
ho(m{r})\,W(r)$$

Sección eficaz de absorción en ondas parciales

$$\sigma_a = -rac{2}{\hbar v} rac{4\pi}{k^2} \sum_l (2l+1) \int dr \, |u_l(r)|^2 \, W(r)$$

$$\psi(r, heta) = rac{1}{kr} \sum_{l=0}^\infty \left(2l+1
ight) i^l u_l(r) \, P_l(\cos heta)$$

Matriz de dispersión con potencial óptico

Función de onda asintótica

$$\psi(r,\theta) \to \frac{1}{2ik} \sum_{l} (2l+1) \left[(-)^{l+1} \frac{e^{-ikr}}{r} + S_l \frac{e^{ikr}}{r} \right] P_l(\cos\theta)$$

$$abla \cdot \boldsymbol{j} = rac{2}{\hbar} \,
ho(\boldsymbol{r}) \, W(r) < 0$$

Pérdida de flujo

$$|S_l|^2 < 1$$

Sección eficaz de absorción

$$\sigma_a = \frac{\pi}{k^2} \sum_{l} (2l+1) \left(1 - |S_l|^2\right)$$

Algunos detalles para la ultima expresión

$$\sigma_a = -\frac{2}{\hbar v} \frac{4\pi}{k^2} \sum_l (2l+1) \int dr \, |u_l(r)|^2 \, W(r)$$

$$\sigma_a = \sum_l \sigma_a(l) \qquad \sigma_a(l) = \frac{\pi}{k^2} (2l+1) T_l$$
 $T_l = -\frac{8}{\hbar v} \int dr |u_l(r)|^2 W(r)$

$$T_l = 1 - |S_l|^2$$

Teorema óptico

Sección total y teorema óptico

$$\sigma_{total}$$
 = $\sigma_{el} + \sigma_a$

$$\sigma_{el} = rac{4\pi}{k^2} \sum_l \left(2l+1\right) |e^{i\delta_l} sen \delta_l|^2$$

$$\sigma_a = \frac{\pi}{k^2} \sum_{l} (2l+1) \left(1 - |S_l|^2\right)$$

Amplitud de scattering en ondas parciales

$$f(\theta) = \frac{1}{2ik} \sum_{l} (2l+1)(S_l-1)P_l(\cos\theta)$$

Teorema óptico

Sección eficaz total

 $\sigma_{total} = \frac{2\pi}{k^2} \sum_{l} (2l+1) \left(1 - \text{Re}S_l\right)$

$$\sigma_{total} = \frac{4\pi}{k} \operatorname{Im} f(\theta = 0)$$

