
Series y residuos

Credit: This notes are 100% from chapter 6 of the book entitled A First Course in Complex

Analysis with Applications by Dennis G. Zill and Patrick D. Shanahan. Jones and Bartlett
Publishers. 2003.

Cauchy’s integral formula for derivatives indicates that if a function f is analytic at a point
z0 , then it possesses derivatives of all orders at that point. As a consequence of this result we
shall see that f can always be expanded in a power series centered at that point. On the other
hand, if f fails to be analytic at z0, we may still be able to expand it in a different kind of
series known as a Laurent series. The notion of Laurent series leads to the concept of a residue,
and this, in turn, leads to yet another way of evaluating complex and, in some instances, real
integrals.

Sequences and Series

Sequences A sequence {zn} is a function whose domain is the set of positive integers and
whose range is a subset of the complex numbers C. If limn→∞ zn = L, we say the sequence
{zn} is convergent. In other words, {zn} converges to the number L if for each positive real
number ε an N can be found such that |zn − L| < ε whenever n > N . A sequence that is not
convergent is said to be divergent.

Example: The sequence { in+1

n
} is convergent, limn→∞

in+1

n
= 0.

Theorem (6.1): Criterion for Convergence A sequence {zn} converges to a complex
number L = a+ ib if and only if ℜ(zn) converges to ℜ(L) = a and ℑ(zn) converges to ℑ(L) = b.

Example Consider the sequence { 3+in
n+i2n

}
Solution: it converges since,

zn =
3 + in

n+ i2n
=

2n2 + 3n

5n2
+ i

n2 − 6n

5n2
(1)

ℜ(zn) → 2

5
(2)

ℑ(zn) → 1

5
(3)

as n → ∞.
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Series An infinite series or series of complex numbers

∞
∑

k=1

zk = z1 + z2 + · · ·+ zn + · · · (4)

is convergent if the sequence of partial sums {Sn}, where

Sn = z1 + z2 + · · ·+ zn (5)

converges. If Sn → L as n → ∞, we say that the series converges to L or that the sum of the
series is L.

Geometric Series A geometric series is any series of the form

∞
∑

k=1

azk−1 = a + az + az2 + · · ·+ azn−1 + · · · (6)

the nth term of the sequence of partial sums is

Sn = a+ az + az2 + · · ·+ azn−1 (7)

When an infinite series is a geometric series, it is always possible to find a formula for Sn:

zSn = az + az2 + · · ·+ azn (8)

Sn − zSn = (az + az2 + · · ·+ azn)− (a+ az + az2 + · · ·+ azn−1) (9)

Sn(1− z) = a− azn = a(1− zn) ⇒ Sn = a
1− zn

1− z
(10)

for n → ∞, zn → 0 whenever |z| < 1, then Sn → a/(1− z), then

a+ az + az2 + · · ·+ azn−1 + · · · = a

1− z
(11)

A geometric series diverges when |z| ≥ 1.

Special Geometric Series .
(i) For a = 1

1

1− z
= 1 + z + z2 + z3 + · · · (12)

(ii) For a = 1 and z → −z
1

1 + z
= 1− z + z2 − z3 + · · · (13)

(iii) For a = 1
1− zn

1− z
= 1 + z + z2 + z3 + · · ·+ zn−1 (14)

(iv) By writing 1−zn

1−z
= 1

1−z
+ −zn

1−z
we get

1

1− z
= 1 + z + z2 + z3 + · · ·+ zn−1 +

zn

1− z
(15)
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Example The infinite series
∞
∑

k=1

(1 + 2i)k

5k
=

1 + 2i

5
+

(1 + 2i)2

52
+ · · · (16)

is a geometric series with a = 1
5
(1 + 2i) and z = 1

5
(1 + 2i). Since |z| =

√
5/5 < 1, the series is

convergent
∞
∑

k=1

(1 + 2i)k

5k
=

1+i2
5

1− 1+i2
5

= i
1

2
(17)

Theorem (6.2): A Necessary Condition for Convergence If
∑∞

k=1 zk converges, then
limn→∞zn = 0.

Theorem (6.3): The nth Term Test for Divergence If limn→∞zn 6= 0, then
∑∞

k=1 zk
diverges.

Absolute and Conditional Convergence An infinite series
∑∞

k=1 zk is said to be abso-
lutely convergent if

∑∞
k=1 |zk| converges. An infinite series

∑∞
k=1 zk is said to be condition-

ally convergent if it converges but
∑∞

k=1 |zk| diverges.
Absolute convergence implies convergence.

Example The series
∑∞

k=1
ik

k2
is absolutely convergent since the series

∑∞
k=1

∣

∣

∣

ik

k2

∣

∣

∣
is the same

as the real convergent p-series
∑∞

k=1
1
k2
.

Tests for Convergence Two of the most frequently used tests for convergence of infinite
series are given in the next theorems.

Theorem (6.4): Ratio Test Suppose
∑∞

k=1 zk is a series of nonzero complex terms such
that

lim
n→∞

∣

∣

∣

∣

zn+1

zn

∣

∣

∣

∣

= L (18)

(i) If L < 1, then the series converges absolutely.
(ii) If L > 1 or L = ∞, then the series diverges.
(iii) If L = 1, the test is inconclusive.

Theorem (6.5): Root Test Suppose
∑∞

k=1 zk is a series of nonzero complex terms such that

lim
n→∞

n
√

|zn| = L (19)

(i) If L < 1, then the series converges absolutely.
(ii) If L > 1 or L = ∞, then the series diverges.
(iii) If L = 1, the test is inconclusive.

Power Series The notion of a power series is important in the study of analytic functions.
An infinite series of the form

∞
∑

k=1

ak(z − z0)
k = a0 + a1(z − z0) + a2(z − z0)

2 + · · · (20)

where the coefficients ak are complex constants, is called a power series in z − z0. It is said to
be centered at z0, called the center of the series.
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Circle of Convergence Every complex power series
∑∞

k=0 ak(z− z0)
k has a radius of con-

vergence and a circle of convergence, which is the circle centered at z0 of largest radius
R > 0 for which the series converges at every point within the circle |z−z0| = R. A power series
converges absolutely at all points z within its circle of convergence, that is, for all z satisfying
|z − z0| < R, and diverges at all points z exterior to the circle, that is, for all z satisfying
|z − z0| > R. The radius of convergence can be:
(i) R = 0 (in which case the serie converges only at its center z = z0 ),
(ii) R a finite positive number (in which case the serie converges at all interior points of the
circle |z − z0| = R), or
(iii) R = ∞ (in which case the serie converges for all z).
A power series may converge at some, all, or at none of the points on the actual circle of
convergence.

Example Consider the power series
∑∞

k=1
zk+1

k
. By the ratio test,

lim
n→∞

∣

∣

∣

∣

∣

zn+2

n+1

zn+1

n

∣

∣

∣

∣

∣

= lim
n→∞

n

n+ 1
|z| = |z| (21)

Thus the series converges absolutely for |z| < 1. The circle of convergence is |z| = 1 and
the radius of convergence is R = 1. On the circle of convergence |z| = 1, the series does not
converge absolutely since

∑∞
k=1

1
k
is the well-known divergent harmonic series.

For a power series
∑∞

k=1 ak(z − z0)
k, the limit depends only on the coefficients ak. Thus, if

(i) limn→∞

∣

∣

∣

an+1

an

∣

∣

∣
= L 6= 0, the radius of convergence is R = 1/L. Esto es aśı porque para que

la serie converja el cociente lim an+1|z−z0|n+1

an|z−z0|n = lim an+1

an
R = LR < 1.

(ii) limn→∞

∣

∣

∣

an+1

an

∣

∣

∣
= 0, the radius of convergence is R = ∞

(iii) limn→∞

∣

∣

∣

an+1

an

∣

∣

∣
= ∞, the radius of convergence is R = 0

Similar conclusions can be made for the root test.

Example Consider the power series
∑∞

k=1
(−1)k+1

k!
(z − 1 − i)k. With the identification an =

(−1)n+1/n! we have

lim
n→∞

∣

∣

∣

∣

∣

∣

(−1)n+2

(n+1)!

(−1)n+1

n!

∣

∣

∣

∣

∣

∣

= lim
n→∞

1

n + 1
= 0 (22)

Hence the radius of convergence is ∞; the power series with center z0 = 1 + i converges
absolutely for all z, that is, for |z − 1− i| < ∞.

Example Consider the power series
∑∞

k=1

(

6k+1
2k+5

)k
(z−2i)k. With an =

(

6n+1
2n+5

)n
, the root test

gives

lim
n→∞

n
√

|an| = lim
n→∞

6n+ 1

2n+ 5
= 3 (23)

Then, the radius of convergence of the series is R = 1/3. The circle of convergence is |z− 2i| =
1/3; the power series converges absolutely for |z − 2i| < 1/3.

The Arithmetic of Power Series Some facts

• A power series
∑∞

k=0 ak(z − z0)
k can be multiplied by a nonzero complex constant c

without affecting its convergence or divergence.
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• A power series
∑∞

k=0 ak(z− z0)
k converges absolutely within its circle of convergence. As

a consequence, within the circle of convergence the terms of the series can be rearranged
and the rearranged series has the same sum L as the original series.

• A power series
∑∞

k=0 ak(z − z0)
k and

∑∞
k=0 bk(z − z0)

k can be added and subtracted by
adding or subtracting like terms. In symbols:

∞
∑

k=0

ak(z − z0)
k ±

∞
∑

k=0

bk(z − z0)
k =

∞
∑

k=0

(ak ± bk)(z − z0)
k (24)

If both series have the same nonzero radius R of convergence, the radius of convergence
of

∑∞
k=0(ak ± bk)(z − z0)

k is R.

• Two power series can (with care) be multiplied and divided.

Taylor Series

Throughout the discussion in this section we will assume that a power series has either a positive
or an infinite radius R of convergence.

Differentiation and Integration of Power Series The three theorems that follow indicate
a function f that is defined by a power series is continuous, differentiable, and integrable within
its circle of convergence.

Theorem (6.6): Continuity A power series
∑∞

k=0 ak(z− z0)
k represents a continuous func-

tion f within its circle of convergence |z − z0| = R.

Theorem (6.7): Term-by-Term Differentiation A power series
∑∞

k=0 ak(z − z0)
k can be

differentiated term by term within its circle of convergence |z − z0| = R.
It follows as a corollary to Theorem 6.7 that a power series defines an infinitely differentiable

function within its circle of convergence and each differentiated series has the same radius of
convergence R as the original power series.

Theorem (6.8): Term-by-Term Integration A power series
∑∞

k=0 ak(z − z0)
k can be in-

tegrated term-by-term within its circle of convergence |z − z0| = R, for every contour C lying
entirely within the circle of convergence.

The theorem states that
∫

C

∞
∑

k=0

ak(z − z0)
kdz =

∞
∑

k=0

ak

∫

C

(z − z0)
kdz (25)

whenever C lies in the interior of |z − z0| = R. Indefinite integration can also be carried out
term by term:

∫ ∞
∑

k=0

ak(z − z0)
kdz =

∞
∑

k=0

ak

∫

(z − z0)
kdz =

∞
∑

k=0

ak
k + 1

(z − z0)
k+1 + constant (26)

The ratio test can be used to be prove that both

∞
∑

k=0

ak(z − z0)
k (27)
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and ∞
∑

k=0

ak
k + 1

(z − z0)
k+1 (28)

have the same circle of convergence |z − z0| = R.

Taylor Series Suppose a power series represents a function f within |z − z0| = R, that is,

f(z) =

∞
∑

k=0

ak(z − z0)
k = a0 + a1(z − z0) + a2(z − z0)

2 + a3(z − z0)
3 + · · · (29)

It follows from Theorem 6.7 that the derivatives of f are the series

f ′(z) =

∞
∑

k=1

akk(z − z0)
k−1 = a1 + 2a2(z − z0) + 3a3(z − z0)

2 + · · ·

f ′′(z) =
∞
∑

k=2

akk(k − 1)(z − z0)
k−2 = 2 · 1a2 + 3 · 2a3(z − z0) + · · ·

...

Since the power series f(z) =
∑∞

k=0 ak(z − z0)
k represents a differentiable function f within

its circle of convergence |z − z0| = R, where R is either a positive number or infinity, we
conclude that a power series represents an analytic function within its circle of convergence.
By evaluating the derivatives at z = z0 we get,

f(z0) = a0 (30)

f ′(z0) = 1!a1 (31)

f ′′(z0) = 2!a2 (32)

f ′′′(z0) = 3!a3 (33)
... (34)

In general,

an =
f (n)(z0)

n!
(35)

with n ≥ 0. Then

f(z) =

∞
∑

k=0

f (k)(z0)

k!
(z − z0)

k (36)

This series is called the Taylor series for f centered at z0.

Maclaurin series It is the Taylor series for z0 = 0,

f(z) =

∞
∑

k=0

f (k)(0)

k!
zk (37)
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Theorem (6.9): Taylor’s Theorem Let f be analytic within a domain D and let z0 be a
point in D. Then f has the series representation

f(z) =

∞
∑

k=0

f (k)(z0)

k!
(z − z0)

k (38)

valid for the largest circle C with center at z0 and radius R that lies entirely within D.
Proof: See pag. 316 of the book.

We can find the radius of convergence of a Taylor series as the distance from the center z0
of the series to the nearest isolated singularity of f . Where, an isolated singularity is a point
at which f fails to be analytic but is, nonetheless, analytic at all other points throughout some
neighborhood of the point. For example, z = 5i is an isolated singularity of f(z) = 1/(z − 5i).
If the function f is entire, then the radius of convergence R = ∞.

Some Important Maclaurin Series

ez = 1 +
z

1!
+

z2

2!
+ · · · =

∞
∑

k=0

zk

k!
(39)

sin z = z − z3

3!
+

z5

5!
− · · · =

∞
∑

k=0

(−)k
z2k+1

(2k + 1)!
(40)

cos z = 1− z2

2!
+

z4

4!
− · · · =

∞
∑

k=0

(−)k
z2k

(2k)!
(41)

Example Suppose the function f(z) = (3− i)/(1− i+ z) is expanded in a Taylor series with
center z0 = 4− 2i. What is its radius of convergence R ?
Solution: Observe that the function is analytic at every point except at z = −1 + i, which is
an isolated singularity of f . The distance from z = −1 + i to z0 = 4− 2i is

|z − z0| =
√

(−1 − 4)2 + (1− (−2))2 =
√
34 = R (42)

The power series expansion of a function, with center z0, is unique. On a practical level this
means that a power series expansion of an analytic function f centered at z0 , irrespective of
the method used to obtain it, is the Taylor series expansion of the function.

Example For example, we can obtain

cos z = 1− z2

2!
+

z4

4!
− · · · =

∞
∑

k=0

(−)k
z2k

(2k)!
(43)

by simply differentiating

sin z = z − z3

3!
+

z5

5!
− · · · =

∞
∑

k=0

(−)k
z2k+1

(2k + 1)!
(44)

term by term.
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Example For example, the Maclaurin series for ez
2

can be obtained by replacing the symbol
z in

ez = 1 +
z

1!
+

z2

2!
+ · · · =

∞
∑

k=0

zk

k!
(45)

by z2,i.e.

ez
2

= 1 +
(z2)

1!
+

(z2)2

2!
+ · · · =

∞
∑

k=0

(z2)k

k!
(46)

= 1 +
z2

1!
+

z4

2!
+ · · · =

∞
∑

k=0

z2k

k!
(47)

Example Find the Maclaurin expansion of f(z) = 1
(1−z)2

.
Solution: From,

1

1− z
= 1 + z + z2 + z3 + · · · (48)

valid for |z| < 1, we differentiate both sides with respect to z to get

1

(1− z)2
= 1 + 2z + 3z2 + · · · =

∞
∑

k=1

kzk−1 (49)

Since we are using Theorem 6.7, the radius of convergence of the last power series is the same
as the original series, R = 1.

Example We can often build on results such as the above one. For example, if we want the
Maclaurin expansion of f(z) = z3

(1−z)2
, we simply multiply the above equation by z3:

z3

(1− z)2
= z3 + 2z4 + 3z5 + · · · =

∞
∑

k=1

kzk+2 (50)

Its radius of convergence is still R = 1.

Example Expand f(z) = 1/(1− z) in a Taylor series with center z0 = 2i.
Solution: By using the geometric series we have

1

1− z
=

1

1− z + 2i− 2i
=

1

1− 2i− (z − 2i)
(51)

=
1

1− 2i

1

1− z−2i
1−2i

(52)

Next, we use the power series by replacing z → z−2i
1−2i

,

1

1− z
=

1

1− 2i

1

1− z−2i
1−2i

(53)

=
1

1− 2i

[

1 +
z − 2i

1 − 2i
+

(

z − 2i

1 − 2i

)2

+
z − 2i

1− 2i
+

(

z − 2i

1− 2i

)3

+ · · ·
]

(54)

=
1

1− 2i
+

z − 2i

(1− 2i)2
+

(z − 2i)2

(1− 2i)3
+ · · · (55)

Because the distance from the center z0 = 2i to the nearest singularity z = 1 is
√
5, we conclude

that the circle of convergence is |z − 2i| =
√
5.
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Remark As a consequence of Theorem 5.11, we know that an analytic function f is infinitely
differentiable. As a consequence of Theorem 6.9, we know that an analytic function f can
always be expanded in a power series with a nonzero radius R of convergence. In real analysis,
a function f can be infinitely differentiable, but it may be impossible to represent it by a power
series.

Laurent Series

If a complex function f fails to be analytic at a point z = z0, then this point is said to be a
singularity or singular point of the function. For example, the complex numbers z = ±2i
are singularities of the function f(z) = z/(z2 + 4); the nonpositive x-axis and the branch point
z = 0 are singular points of Lnz. In this section we will be concerned with a new kind of
“power series” expansion of f about an isolated singularity z0.

Isolated Singularities Suppose that z = z0 is a singularity of a complex function f . The
point z = z0 is said to be an isolated singularity of the function f if there exists some deleted
neighborhood, or punctured open disk, 0 < |z − z0| < R of z0 throughout which f is analytic.
For example, z = ±2i are isolated singularities of f(z) = z/(z2 + 4). On the other hand, the
branch point z = 0 is not an isolated singularity of Lnz. We say that a singular point z = z0
of a function f is nonisolated if every neighborhood of z0 contains at least one singularity of
f other than z0. For example, the branch point z = 0 is a nonisolated singularity of Lnz.

Series with negative powers If z = z0 is a singularity of a function f , then certainly f
cannot be expanded in a power series with z0 as its center. However, about an isolated singu-
larity z = z0 , it is possible to represent f by a series involving both negative and nonnegative
integer powers of z − z0,

f(z) = · · ·+ a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)

2 · · ·

=
∞
∑

k=1

a−k(z − z0)
−k +

∞
∑

k=0

ak(z − z0)
k (56)

The series with negative powers is called principal part and will converge for
∣

∣

∣

1
z−z0

∣

∣

∣
< r∗,

i.e. |z − z0| > 1/r∗ = r. The part of nonnegative powers is called the analytic part and will
converge for |z − z0| < R. Then, the sum converges when z is a point in an annular domains
defined by r < |z − z0| < R.

Example The function f(z) = sin z/z4 is not analytic at the isolated singularity z = 0 and
hence cannot be expanded in a Maclaurin series. Since sin z is an entire function with Maclaurin
series given by,

sin z = z − z3

3!
+

z5

5!
− z7

7!
+ · · · (57)

for |z| < ∞, we have

f(z) =
sin z

z4
=

1

z3
− 1

3!z
+

z

5!
− z3

7!
+ · · · (58)

The analytic part of this series converges for |z| < ∞. The principal part is valid for |z| > 0.
Thus, it converges for all z except at z = 0, i.e. 0 < |z| < ∞.
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Theorem (6.10): Laurent’s Theorem Let f be analytic within the annular domain D
defined by r < |z − z0| < R. Then f has the series representation

f(z) =
∞
∑

k=−∞
ak(z − z0)

k (59)

valid for r < |z − z0| < R. The coefficients ak are given by

ak =
1

2πi

∮

C

f(s)

(s− z0)k+1
ds (60)

with k = 0,±1, · · · , where C is a simple closed curve that lies entirely within D and has z0 in
its interior. See Figure 1
Proof: See pag. 327 in the book.

Figure 1: (From the book)

Regardless how a Laurent expansion of a function f is obtained in a specified annular domain
it is the Laurent series; that is, the series we obtain is unique.

In the case when a−k = 0 for k = 1, 2, 3, · · · , the principal part of the Laurent series is
zero and it reduces to a Taylor series. Thus, a Laurent expansion can be considered as a
generalization of a Taylor series.

Example Expand f(z) = 1
z(z−1)

in a Laurent series valid for the following annular domains:

(a) 0 < |z| < 1
(b) 1 < |z|
(c) 0 < |z − 1| < 1
(d) 1 < |z − 1|

(a) We expand the geometric series 1/(1− z) valid for |z| < 1,

f(z) = −1

z

1

1− z
(61)

= −1

z
[1 + z + z2 + z3 + · · · ] (62)

= −1

z
− 1− z − z2 − · · · (63)

which converges for 0 < |z| < 1.
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(b) To obtain a series that converges for 1 < |z|, we start by constructing a series that
converges for |1/z| < 1 ⇒ 1 < |z|,

f(z) =
1

z2
1

1− 1
z

(64)

=
1

z2

[

1 +
1

z
+

1

z2
+ · · ·

]

(65)

=
1

z2
+

1

z3
+

1

z4
+ · · · (66)

(c) We rewrite f(z) and proceed like in (a),

f(z) =
1

(1− 1 + z)(z − 1)
(67)

=
1

z − 1

1

1 + (z − 1)
(68)

=
1

z − 1
[1− (z − 1) + (z − 1)2 − (z − 1)3 + · · · ] (69)

=
1

z − 1
− 1 + (z − 1)− (z − 1)2 + · · · (70)

The requirement that z 6= 1 is equivalent to 0 < |z − 1|, and the geometric series in brackets
converges for |z − 1| < 1. Thus the last series converges for z satisfying 0 < |z − 1| and
|z − 1| < 1, that is, for 0 < |z − 1| < 1.

(d) Proceeding as in part (b), we write

f(z) =
1

(z − 1)(1 + (z − 1))
(71)

=
1

(z − 1)2
1

1 + 1
z−1

(72)

=
1

(z − 1)2

[

1− 1

z − 1
+

1

(z − 1)2
− 1

(z − 1)3
+ · · ·

]

(73)

=
1

(z − 1)2
− 1

(z − 1)3
+

1

(z − 1)4
− · · · (74)

Because the series within the brackets converges for |1/(z − 1)| < 1, the final series converges
for 1 < |z − 1|.

Example Expand f(z) = 1
(z−1)2(z−3)

in a Laurent series valid for:

(a) 0 < |z − 1| < 2 and
(b) 0 < |z − 3| < 2.
Solution:

11



(a) We need to express z − 3 in terms of z − 1

f(z) =
1

(z − 1)2(z − 3)
(75)

=
1

(z − 1)2

[

1

−2 + (z − 1)

]

(76)

=
−1

2(z − 1)2

[

1

1− z−1
2

]

(77)

=
−1

2(z − 1)2

[

1 +
z − 1

2
+

(

z − 1

2

)2

+

(

z − 1

2

)3

+ · · ·
]

(78)

= − 1

2(z − 1)2
− 1

4(z − 1)
− 1

8
− 1

16
(z − 1)− · · · (79)

(b) To obtain powers of z − 3, we write z − 1 = 2 + (z − 3) and

f(z) =
1

(z − 1)2(z − 3)
(80)

=
1

z − 3
[2 + (z − 3)]−2 (81)

=
1

4(z − 3)

[

1 +
z − 3

2

]−2

(82)

=
1

4(z − 3)

[

1 +
(−2)

1!

(

z − 3

2

)

+
(−2)(−3)

2!

(

z − 3

2

)2

+ · · ·
]

=
1

4(z − 3)
− 1

4
+

3

16
(z − 3)− 1

8
(z − 3)2 + · · · (83)

where we have used the binomial series ((1+ z)α = 1+αz+ α(α−1)
2!

z2+ α(α−1)(α−2)
3!

z3+ · · · valid
for |z| < 1). The binomial expansion is valid for |(z − 3)/2| < 1, i.e. |z − 3| < 2.

Example Expand f(z) = 8z+1
z(1−z)

in a Laurent series valid for 0 < |z| < 1.
Solution: by partial fractions we write

f(z) =
8z + 1

z(1− z)
(84)

=
1

z
+

9

1− z
(85)

=
1

z
+ 9 + 9z + 9z2 + · · · (86)

the geometric series converges for |z| < 1, but due to the term 1/z, the resulting Laurent series
is valid for 0 < |z| < 1.

Example Expand f(z) = e3/z in a Laurent series valid for 0 < |z| < ∞.
Solution: For all finite |z| < ∞, is valid the expansion

ez = 1 + z +
z2

2!
+ · · · (87)

We obtain the Laurent series f by simply replacing z → 3/z, for z 6= 0,

e3/z = 1 +
3

z
+

32

2!z2
+ · · · (88)

valid for 0 < |z| < ∞.
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Zeros and Poles

We will assign different names to the isolated singularity z = z0 according to the number of
terms in the principal part of the Laurent series.

Classification of Isolated Singular Points. An isolated singular point z = z0 of a complex
function f is given a classification depending on whether the principal part of its Laurent
expansion contains zero, a finite number, or an infinite number of terms (Table 1):
(i) Removable singularity: If the principal part is zero, that is, all the coefficients a−k are
zero, then z = z0 is called a removable singularity.
(ii) Pole: If the principal part contains a finite number of nonzero terms, then z = z0 is called
a pole. If, in this case, the last nonzero coefficient is a−n , n ≥ 1, then we say that z = z0 is a
pole of order n. If z = z0 is pole of order 1, then the principal part contains exactly one term
with coefficient a−1. A pole of order 1 is commonly called a simple pole.
(iii) Essential singularity: If the principal part contains an infinitely many nonzero terms,
then z = z0 is called an essential singularity.

z = z0 Laurent series for 0 < |z − z0| < R

Removable singularity a0 + a1(z − z0) + a2(z − z0)
2 + · · ·

Pole of order n a−n

(z−z0)n
+ · · ·+ a−1

z−z0
+ a0 + a1(z − z0) + · · ·

Simple pole a−1

z−z0
+ a0 + a1(z − z0) + · · ·

Essential singularity · · ·+ a2
(z−z0)−2 + a0 + a1(z − z0) + · · ·

Table 1: From the book.

Removable Singularity In the series,

sin z

z
= 1− z2

3!
+

z4

5!
− · · · (89)

that all the coefficients in the principal part of the Laurent series are zero. Hence z = 0 is a
removable singularity of the function f(z) = (sin z)/z.

If a function f has a removable singularity at the point z = z0 , then we can always supply
an appropriate definition for the value of f(z0) so that f becomes analytic at z = z0 . For
instance, since the right-hand side of the series expansion of (sin z)/z is 1 when we set z = 0,
it makes sense to define f(0) = 1. Hence the function f(z) = (sinz)/z, as given by

sin z

z
= 1− z2

3!
+

z4

5!
− · · · (90)

is now defined and continuous at every complex number z. Indeed, f is also analytic at z = 0
because it is represented by the Taylor series 1− z2/3! + z4/5!− · · · centered at 0.
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Example .
(i)

sin z

z2
=

1

z
− z

3!
+

z3

5!
− · · · (91)

sin z

z4
=

1

z3
− 1

3!z
+

z

5!
− · · · (92)

for 0 < |z| < ∞, the z = 0 is a simple pole of the function f(z) = (sin z)/z2 and a pole of order
3 of the function g(z) = (sin z)/z4.
(ii) The expansion of f of the Example 3 of Section 6.3 valid for 0 < |z − 1| < 2 was given by
the equation

f(z) =
1

(z − 1)2(z − 3)
= − 1

2(z − 1)2
− 1

4(z − 1)
− 1

8
− z − 1

16
− · · · (93)

Then, z = 1 is a pole of order 2.
(iii) The value z = 0 is an essential singularity of f(z) = e3/z.

Zeros A number z0 is zero of a function f if f(z0) = 0. We say that an analytic function f
has a zero of order n or a zero of multiplicity n at z = z0 if

f(z0) = 0 (94)

f ′(z0) = 0 (95)

f ′′(z0) = 0 (96)
... (97)

f (n−1)(z0) = 0 (98)

but
f (n)(z0) 6= 0 (99)

A zero of order 1 is called a simple zero.

Example For f(z) = (z− 5)3 we see that f(5) = 0, f ′(5) = 0, f ′′(5) = 0, but f ′′′(5) = 6 6= 0.
Thus f has a zero of order (or multiplicity) 3 at z0 = 5.

Theorem (6.11): Zero of Order n A function f that is analytic in some disk |z− z0| < R
has a zero of order n at z = z0 if and only if f can be written

f(z) = (z − z0)
nφ(z) (100)

where φ is analytic at z = z0 and φ(z0) 6= 0

Example The analytic function f(z) = z sin z2 has a zero at z = 0. If we replace z by z2 in
the series expansion of sin z we get

f(z) = z sin2 z = z3 − z7

3!
+

z11

5!
− · · · (101)

= z3[1− z4

3!
+

z8

5!
− · · · ] (102)

= z3φ(z) (103)

with φ(0) = 1 6= 0, then z = 0 is a zero of f of order 3.
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Theorem (6.12): Pole of Order n A function f analytic in a punctured disk 0 < |z−z0| <
R has a pole of order n at z = z0 if and only if f can be written

f(z) =
φ(z)

(z − z0)n
(104)

where φ is analytic at z = z0 and φ(z0) 6= 0.

More about zeros A zero z = z0 of an analytic function f is isolated in the sense that
there exists some neighborhood of z0 for which f(z) 6= 0 at every point z in that neighborhood
except at z = z0. As a consequence, if z0 is a zero of a nontrivial analytic function f , then the
function 1/f(z) has an isolated singularity at the point z = z0 .

Theorem (6.13): Pole of Order n If the functions g and h are analytic at z = z0 and h
has a zero of order n at z = z0 and g(z0) 6= 0, then the function f(z) = g(z)/h(z) has a pole of
order n at z = z0.

Examples .
(i) The rational function

f(z) =
2z + 5

(z − 1)(z + 5)(z − 2)4
(105)

shows that the denominator has zeros of order 1 at z = 1 and z = −5, and a zero of order 4
at z = 2. Since the numerator is not zero at any of these points, it follows that f has simple
poles at z = 1 and z = −5, and a pole of order 4 at z = 2.
(ii) The value z = 0 is a zero of order 3 of z sin z2. Then, we conclude that the reciprocal
function f(z) = 1/(z sin z2) has a pole of order 3 at z = 0.

Remarks .
(i) From the preceding discussion, it should be intuitively clear that if a function f has a pole
at z = z0 , then |f(z)| → ∞ as z → z0 from any direction and we can write limz→z0 f(z) = ∞.
(ii ) A function f is meromorphic if it is analytic throughout a domain D, except possibly
for poles in D. It can be proved that a meromorphic function can have at most a finite number
of poles in D. For example, the rational function f(z) = 1/(z2 + 1) is meromorphic in the
complex plane.

Residues and Residue Theorem

Residue The coefficient a1 of 1/(z − z0) in the Laurent series is called the residue of the
function f at the isolated singularity z0, noted as a1 = Res(f(z), z0).

Examples .
(i) z = 1 is a pole of order two of the function f(z) = 1

(z−1)2(z−3)
. From the Laurent series

obtained above valid for the deleted neighborhood of z = 1 defined by 0 < |z − 1| < 2,

f(z) =
−1/2

(z − 1)2
+

−1/4

z − 1
− 1

8
− z − 1

16
− · · · ... (106)

we have Res(f(z), 1) = −1/4.
(ii) z = 0 is an essential singularity of f(z) = e3/z . From its Laurent series

e3/z = 1 +
3

z
+

32

2!z2
+ · · · (107)
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valid for 0 < |z| < ∞, we get Res(f(z), 0) = 3.
The following theorem gives a way to obtain the residues of a function f without the

necessity of expanding f in a Laurent series.

Theorem (6.14): Residue at a Simple Pole If f has a simple pole at z = z0 , then

Res(f(z), z0) = lim
z→z0

(z − z0)f(z) (108)

Prof: Since f has a simple pole at z = z0 , its Laurent expansion convergent on a punctured
disk 0 < |z − z0| < R has the form

f(z) =
a−1

z − z0
+ a0 + a1(z − z0) + · · · (109)

where a1 6= 0. By multiplying both sides of this series by z − z0 and then taking the limit as
z → z0 we obtain the above relation.

Theorem (6.15): Residue at a Pole of Order n If f has a pole of order n at z = z0 ,
then

Res(f(z), z0) =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1
(z − z0)

nf(z) (110)

Proof: See pag. 344 of the book.

Example The function f(z) = 1
(z−1)2(z−3)

has a simple pole at z = 3 and a pole of order 2 at
z = 1. Find the residues.
Solution: Since z = 3 is a simple pole, we have:

Res(f(z), 3) = lim
z→3

(z − 3)f(z) = lim
z→3

1

(z − 1)2
=

1

4
(111)

For the pole of order 2, we have

Res(f(z), 1) =
1

(2− 1)!
lim
z→1

d2−1

dz2−1
(z − 1)2f(z) (112)

= lim
z→1

d

dz
(z − 1)2

1

(z − 1)2(z − 3)
(113)

= lim
z→1

d

dz

1

(z − 3)
(114)

= lim
z→1

−1

(z − 3)2
=

−1

4
(115)

When f is not a rational function, calculating residues by means of the above limits can
sometimes be tedious. An alternative residue formula can be obtain if the function f can be
written as a quotient f(z) = g(z)/h(z), where g and h are analytic at z = z0. If g(z0) 6= 0 and
if the function h has a zero of order 1 at z0, then f has a simple pole at z = z0 and

Res(f(z), z0) =
g(z0)

h′(z0)
(116)

Proof: Let us write the derivative of h

h′(z) = lim
z→z0

h(z)− h(z0)

z − z0
= lim

z→z0

h(z)

z − z0
(117)
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by using the definition of residues and h(z0) = 0, we get

Res(f(z), z0) = lim
z→z0

(z − z0)f(z) (118)

= lim
z→z0

(z − z0)
g(z)

h(z)
(119)

= lim
z→z0

g(z)
h(z)
z−z0

(120)

= lim
z→z0

g(z)
h(z)−h(z0)

z−z0

(121)

=
g(z0)

h′(z0)
(122)

Example The polynomial z4 + 1 can be factored as (z − z1)(z − z2)(z − z3)(z − z4), where
z1 = eiπ/4 , z2 = e3iπ/4 , z3 = e5iπ/4, and z4 = e7iπ/4 are its four distinct roots. Then, the
function f(z) = 1/(z4 + 1) has four simple poles. By using Res(f(z), z0) =

g(z0)
h′(z0)

we get

Res(f(z), z1) =
1

4z31
=

1

4
e−3iπ/4 = − 1

4
√
2
− i

1

4
√
2

(123)

Res(f(z), z2) =
1

4z32
=

1

4
e−9iπ/4 =

1

4
√
2
− i

1

4
√
2

(124)

Res(f(z), z3) =
1

4z33
=

1

4
e−15iπ/4 =

1

4
√
2
+ i

1

4
√
2

(125)

Res(f(z), z4) =
1

4z34
=

1

4
e−21iπ/4 = − 1

4
√
2
+ i

1

4
√
2

(126)

Alternatively we can use the expression limz→z0(z − z0)f(z) for each, pole

Res(f(z), zi) = lim
z→zi

(z − zi)
1

(z − z1)(z − z2)(z − z3)(z − z4)
(127)

for example,

Res(f(z), z1) = lim
z→z1

(z − z1)
1

(z − z1)(z − z2)(z − z3)(z − z4)

=
1

(z1 − z2)(z1 − z3)(z1 − z4)

=
1

(eiπ/4 − e3iπ/4)(eiπ/4 − e5iπ/4)(eiπ/4 − e7iπ/4)

and then, work out the above expression to reduce it to − 1
4
√
2
− i 1

4
√
2
.

Theorem (6.16): Cauchy’s Residue Theorem Let D be a simply connected domain and
C a simple closed contour lying entirely within D. If a function f is analytic on and within C,
except at a finite number of isolated singular points z1, z2, · · · , zn within C, then

∮

C

f(z)dz = 2πi

n
∑

k=1

Res(f(z), zk) (128)

Proof: Suppose C1, C2, · · · , Cn are circles centered at z1, z2, · · · , zn , respectively. Suppose
further that each circle Ck has a radius rk small enough so that C1, C2, · · · , Cn are mutually
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Figure 2: n singular points within contour C (From the book)

disjoint and are interior to the simple closed curve C, Fig. 2. We known from earlier develop
that

∮

Ck
f(z)dz = 2πiRes(f(z), zk), and so by Theorem 5.5 we have

∮

C

f(z)dz =

n
∑

k=1

∮

Ck

f(z)dz = 2πi

n
∑

k=1

Res(f(z), zk) (129)

Example Evaluate
∮

C
1

(z−1)2(z−3)
dz for the following two contours:

(i) a rectangle defined by x = 0, x = 4, y = −1, y = 1,
(ii) the circle |z| = 2.
Solution:
(i) Since both z = 1 and z = 3 are poles within the rectangle we have

∮

C

1

(z − 1)2(z − 3)
dz = 2πi[Res(f(z), 1) +Res(f(z), 3)] (130)

= 2πi

[−1

4
+

1

4

]

= 0 (131)

(132)

(ii) Since only the pole z = 1 lies within the circle |z| = 2, we have
∮

C

1

(z − 1)2(z − 3)
dz = 2πiRes(f(z), 1) (133)

= 2πi

(−1

4

)

= −i
π

2
(134)

Example Evaluate
∮

C
2z+6
z2+4

dz where the contour C is the circle |z − i| = 2:
Solution: By factoring the denominator as z2 + 4 = (z − 2i)(z + 2i) we see that the integrand
has simple poles at −2i and 2i. Because only 2i lies within the contour C, we get

∮

C

2z + 6

z2 + 4
dz = 2πiRes(f(z), 2i) (135)

= 2πi

(

3 + 2i

2i

)

= π(3 + i2) (136)
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Example Evaluate
∮

C
ez

z4+5z3
dz where the contour C is the circle |z| = 2:

Solution: By factoring the denominator as z4 + 5z3 = z3(z + 5) we see that the integrand has
a pole of order 3 at z = 0 and a single pole at z = −5. But only the first one is inside C, then

∮

C

ez

z4 + 5z3
dz = 2πiRes(f(z), 0) (137)

= 2πi
1

2!
lim
z→0

d2

dz2
z3

ez

z4 + 5z3
(138)

= πi lim
z→0

d2

dz2
z3

ez

z3(z + 5)
(139)

= πi lim
z→0

d2

dz2
ez

(z + 5)
(140)

= πi lim
z→0

(z2 + 8z + 17)ez

(z + 5)3
(141)

= i
17π

125
(142)

Example Evaluate
∮

c
tan zdz, where the contour C is the circle |z| = 2.

Solution: The integrand f(z) = tan z = sin z/ cos z has simple poles at the points where
cos z = 0, i.e. z = (2n+ 1)π/2, n = 0,±1, · · · . Since only −π/2 and π/2 are within the circle
|z| = 2, we have

∮

C

tan zdz = 2πi [Res(f(z),−π/2) +Res(f(z), π/2)] (143)

With the identifications g(z) = sin z, h(z) = cos z, and h′(z) = − sin z, we get

∮

C

tan zdz = 2πi

[

sin(−π/2)

− sin(−π/2)
+

sin(π/2)

− sin(π/2)

]

(144)

= 2πi[−1 + (−1)] = −4πi (145)

Example Evaluate
∮

c
e3/zdz, where the contour C is the circle |z| = 1.

Solution: z = 0 is an essential singularity of the integrand f(z) = e3/z and so neither of the
two above procedure are applicable to find the residue of f at that point. Nevertheless, we saw
demonstrate above that

e3/z = 1 +
3

z
+

32

2!z2
+ · · · (146)

i.e. Res(f(z), 0) = a−1 = 3. From,

∮

c

f(z)dz = 2πi

n
∑

k=1

Res(f(z), zk) (147)

where zk are the isolate singularities of f , we get

∮

c

e3/zdz = 2πi

n
∑

k=1

Res(f(z), zk) = 2πiRes(f(z), 0) = 6πi (148)
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Some Consequences of the Residue Theorem

Evaluation of Real Trigonometric Integrals

Integrals of the Form
∫ 2π

0
F (cos θ, sin θ)dθ The basic idea here is to convert a real trigono-

metric integral into a complex integral, where the contour C is the unit circle |z| = 1 centered
at the origin.

We begin by parametrizing the contour by z = eiθ , 0 ≤ θ ≤ 2π, then

dz = ieiθdθ (149)

cos θ =
eiθ + e−iθ

2
(150)

sin θ =
eiθ − e−iθ

2i
(151)

or

dθ =
dz

iz
(152)

cos θ =
1

2
(z + z−1) (153)

sin θ =
1

2i
(z − z−1) (154)

then
∫ 2π

0

F (cos θ, sin θ)dθ →
∮

C

F (
1

2
(z + z−1),

1

2i
(z − z−1))

dz

iz
(155)

where C is the unit circle |z| = 1.

Example Evaluate
∫ 2π

0
1

(2+cos θ)2
dθ

Solution: using the above substitutions we get

∮

C

1

[2 + 1
2
(z + z−1)]2

dz

iz
=

∮

C

1

(2 + z2+1
2z

)2
dz

iz
(156)

=
4

i

∮

C

z

(z2 + 4z + 1)2
dz (157)

=
4

i

∮

C

z

[(z − z1)(z − z2)]2
dz (158)

with z1 = −2−
√
3 and z2 = −2 +

√
3. Because only z2 is inside the unit circle C, we have

∮

C

1

[2 + 1
2
(z + z−1)]2

dz

iz
=

4

i

∮

C

z

[(z − z1)(z − z2)]2
dz (159)

=
4

i

∮

C

z

(z − z1)2(z − z2)2
dz (160)

=
4

i
2πiRes(f(z), z2) (161)
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where

Res(f(z), z2) = lim
z→z2

d

dz
(z − z2)

2f(z) (162)

= lim
z→z2

d

dz
(z − z2)

2 z

(z − z1)2(z − z2)2
(163)

= lim
z→z2

d

dz

z

(z − z1)2
(164)

= lim
z→z2

−z − z1
(z − z1)3

=
1

6
√
3

(165)

then
∮

C

1

[2 + 1
2
(z + z−1)]2

dz

iz
=

4

i
2πiRes(f(z), z2) (166)

=
4

i
2πi

1

6
√
3

(167)

=
4π

3
√
3

(168)

and, finally,
∫ 2π

0

1

(2 + cos θ)2
dθ =

4π

3
√
3

(169)

Evaluation of Real Improper Integrals

Integrals of the Form
∫∞
−∞ f(x)dx Suppose y = f(x) is a real function that is defined and

continuous on the interval [0,∞) defined as

∫ ∞

−∞
f(x)dx =

∫ 0

−∞
f(x)dx+

∫ ∞

0

f(x)dx = I1 + I2 (170)

with

I1 =

∫ ∞

0

f(x)dx = lim
R→∞

∫ R

0

f(x)dx (171)

I2 =

∫ 0

−∞
f(x)dx = lim

R→−∞

∫ 0

−R

f(x)dx (172)

provided both integrals I1 and I2 are convergent. If either one, I1 or I2 , is divergent, then
∫∞
−∞ f(x)dx is divergent. It is important to remember that the above definition for the improper

integral is not the same as limR→∞
∫ R

−R
f(x)dx.

For the integral
∫∞
−∞ f(x)dx to be convergent, the limits

limR→∞
∫ R

0
f(x)dx and limR→−∞

∫ 0

−R
f(x)dx must exist independently of one another. But, in

the event that we know (a priori) that an improper integral
∫∞
−∞ f(x)dx converges, we can then

evaluate it by
∫ ∞

−∞
f(x)dx = lim

R→∞

∫ R

−R

f(x)dx (173)

On the other hand, the symmetric limit limR→∞
∫ R

−R
f(x)dx may exist even though the

improper integral
∫∞
−∞ f(x)dx is divergent.
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The limit in

lim
R→∞

∫ R

−R

f(x)dx (174)

if it exists, is called the Cauchy principal value (P.V.) of the integral and is written

P.V.

∫ ∞

−∞
f(x)dx = lim

R→∞

∫ R

−R

f(x)dx (175)

Cauchy Principal Value When an integral of form
∫∞
−∞ f(x)dx converges, its Cauchy prin-

cipal value is the same as the value of the integral. If the integral diverges, it may still possess
a Cauchy principal value.

About even functions Suppose f(x) is continuous on (−∞,∞) and is an even function,
that is, f(−x) = f(x). If the Cauchy principal value exists,

∫ ∞

0

f(x)dx =
1

2
P.V.

∫ ∞

−∞
f(x)dx (176)

∫ ∞

−∞
f(x)dx = P.V.

∫ ∞

−∞
f(x)dx (177)

About evaluation of the improper integral To evaluate an integral
∫∞
−∞ f(x)dx, where the rational function f(x) = p(x)/q(x) is continuous on (−∞,∞), by residue
theory we replace x by the complex variable z and integrate the complex function f over a closed
contour C that consists of the interval [−R,R] on the real axis and a semicircle CR of radius
large enough to enclose all the poles of f(z) = p(z)/q(z) in the upper half-plane Im(z) > 0,
Fig. 3. By Theorem 6.16 we have

Figure 3: (From the book)

∮

C

f(z)dz =

∫

CR

f(z)dz +

∫ R

−R

f(x)dx (178)

= 2πi
n

∑

k=1

Res(f(z), zk) (179)

where zk , k = 1, 2, · · · , n denotes poles in the upper half-plane. If we can show that the integral
∫

CR
f(z)dz → 0 as R → ∞, then we have

P.V.

∫ ∞

−∞
f(x)dx = lim

R→∞

∫ R

−R

f(x)dx (180)

= 2πi

n
∑

k=1

Res(f(z), zk) (181)
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Example Evaluate the Cauchy principal value of
∫∞
−∞

1
(x2+1)(x2+9)

dx.
Solution: let us write

f(z) =
1

(z2 + 1)(z2 + 9)
=

1

(z − i)(z + i)(z − 3i)(z + 3i)
(182)

we take C be the closed contour consisting of the interval [−R,R] on the x-axis and the
semicircle CR of radius R > 3.

∮

C

f(z)dz =

∫ R

−R

f(z)dz +

∫

CR

f(z)dz = I1 + I2 (183)

= 2πi[Res(f(z), i) +Res(f(z), 3i)] = 2πi

(

1

16i
− 1

48i

)

=
π

12
(184)

We now want to let R → ∞. Before doing this, we use the following inequality valid in the
contour CR

|(z2 + 1)(z2 + 9)| ≥ ||z2| − 1| · ||z2| − 9| = (R2 − 1)(R2 − 9) (185)

Since the length L of the semicircle is πR, it follows from the ML-inequality, Theorem 5.3, that

|I2| =
∣

∣

∣

∣

∫

CR

1

(z2 + 1)(z2 + 9)

∣

∣

∣

∣

≤ πR

(R2 − 1)(R2 − 9)
(186)

Then, |I2| → 0 as R → ∞, and so

lim
R→∞

I2 = 0 (187)

(188)

and then,

lim
R→∞

I1 =
π

12
(189)

Finally,

lim
R→∞

∫ R

−R

1

(x2 + 1)(x2 + 9)
dx = P.V.

∫ ∞

−∞

1

(x2 + 1)(x2 + 9)
dx =

π

12
(190)

Because the integrand f(z) is an even function, the existence of the Cauchy principal value
implies that the original integral converges to π/12, i.e.

∫ ∞

−∞

1

(x2 + 1)(x2 + 9)
dx =

π

12
(191)

Sufficient conditions under which the contour integral along CR approaches zero as R → ∞
is always true are summarized in the next theorem.

Theorem (6.17): Behavior of Integral as R → ∞ Suppose f(z) = p(z)/q(z) is a rational
function, where the degree of p(z) is n and the degree of q(z) ism ≥ n+2. If CR is a semicircular
contour z = Reiθ , 0 ≤ θ ≤ π, then

∫

CR
f(z)dz → 0 as R → ∞.
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Example Evaluate the Cauchy principal value of
∫∞
−∞

1
x4+1

dx.

Solution: The conditions given in Theorem 6.17 are satisfied. f(z) = 1/(z4 + 1) has simple
poles in the upper half-plane at z1 = eπi/4 and z2 = e3πi/4, with residues

Res(f(z), z1) = − 1

4
√
2
− i

1

4
√
2

(192)

Res(f(z), z2) =
1

4
√
2
− i

1

4
√
2

(193)

then

PV

∫ ∞

−∞

1

x4 + 1
dx = 2πi[Res(f(z), z1) +Res(f(z), z2)] =

π√
2

(194)

Since the integrand f(z) is an even function, the original integral converges to π/
√
2, i.e.

∫ ∞

−∞

1

x4 + 1
dx =

π√
2

(195)

Fourier Integrals:
∫∞
−∞ f(x) cosαxdx and

∫∞
−∞ f(x) sinαxdx Fourier integrals appear as

the real and imaginary parts in the improper integral
∫∞
−∞ f(x)eiαxdx.

We can write
∫ ∞

−∞
f(x)eiαxdx =

∫ ∞

−∞
f(x) cosαxdx+ i

∫ ∞

−∞
f(x) sinαxdx (196)

whenever both integrals on the right-hand side of converge. Suppose f(x) = p(x)/q(x) is
a rational function that is continuous on (−∞,∞). Then both Fourier integrals in can be
evaluated at the same time by considering the complex integral

∫

C
f(z)eiαzdz, where α > 0,

and the contour C consists of the interval [−R,R] on the real axis and a semicircular contour
CR with radius large enough to enclose the poles of f(z) in the upper-half plane.

The next theorem gives sufficient conditions under which the contour integral along CR

approaches zero as R → ∞.

Theorem (6.18): Behavior of Integral as R → ∞ Suppose f(z) = p(z)/q(z) is a rational
function, where the degree of p(z) is n and the degree of q(z) ism ≥ n+2. If CR is a semicircular
contour z = Reiθ , 0 ≤ θ ≤ π, and α > 0, then

∫

CR
f(z)eiαzdz → 0 as R → ∞.

Example Evaluate the Cauchy principal value of
∫∞
0

x sinx
x2+9

dx.
Solution: First we rewrite the integral

∫ ∞

0

x sin x

x2 + 9
dx =

1

2

∫ ∞

−∞

x sin x

x2 + 9
dx (197)

With α = 1 we build
∮

C

z

z2 + 9
eizdz (198)

with C a semicircle in the upper complex plane. Using theorem 6.16

∫

CR

z

z2 + 9
eizdz +

∫ R

−R

x

x2 + 9
eixdx = 2πiRes(f(z)eiz, 3i) (199)

where

Res(f(z)eiz , 3i) = Res(
z

z2 + 9
eiz, 3i) =

z

2z
eiz

∣

∣

∣

z=3i
=

e−3

2
(200)
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The integral in the contour CR goes to zero, then

PV

∫ ∞

−∞

x

x2 + 9
eixdx = 2πi

(

e−3

2

)

= i
π

e3
(201)

Then,
∫ ∞

−∞

x

x2 + 9
eixdx =

∫ ∞

−∞

x cos x

x2 + 9
dx+ i

∫ ∞

−∞

x sin x

x2 + 9
dx = i

π

e3
(202)

Equating real and imaginary parts we get

PV

∫ ∞

−∞

x cos x

x2 + 9
dx = 0 (203)

PV

∫ ∞

−∞

x sin x

x2 + 9
dx =

π

e3
(204)

Finally, in view of the fact that the integrand is an even function, we obtain the value of the
required integral,

∫ ∞

0

x sin x

x2 + 9
dx =

1

2

∫ ∞

−∞

x sin x

x2 + 9
dx =

π

2e3
(205)

Indented Contours In the situation where f has poles on the real axis, we must use an
indented(mellado) contour as illustrated in Figure 4. The symbol Cr denotes a semicircular
contour centered at z = c and oriented in the positive direction. The next theorem is important
to this discussion.

Figure 4: (From the book)

Theorem (6.19): Integral of functions with pole on the real axis Suppose f has a
simple pole z = c on the real axis. If Cr is the contour defined by z = c+ reiθ , 0 ≤ θ ≤ π, then

lim
r→0

∫

Cr

f(z)dz = πiRes(f(z), c) (206)

Proof: See pag. 359 in the book
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Figure 5: (From the book)

Example Evaluate the Cauchy principal value of
∫∞
−∞

sinx
x(x2−2x+2)

dx.
Solution: Let us consider the contour integral

∮

C

eiz

z(z2 − 2z + 2)
dz (207)

The function f(z) = eiz

z(z2−2z+2)
has a pole at z = 0 and at z = 1 + i in the upper half-plane.

The contour C, shown in Figure 5, is indented at the origin, then

∮

C

=

∫

CR

+

∫ −r

−R

+

∫

−Cr

+

∫ R

r

= 2πiRes(f(z)eiz, 1 + i) (208)

By taking the limits R → ∞ and r → 0, it follows from Theorems 6.18 and 6.19 that

PV

∫ ∞

−∞

eix

x(x2 − 2x+ 2)
dx− πiRes(f(z)eiz, 0) = 2πiRes(f(z)eiz, 1 + i)

where

Res(f(z)eiz , 0) =
1

2
(209)

Res(f(z)eiz, 1 + i) = −e−1+i

4
(1 + i) (210)

then

PV

∫ ∞

−∞

eix

x(x2 − 2x+ 2)
dx = πi

1

2
+ 2πi

(

−e−1+i

4
(1 + i)

)

(211)

Using e−1+i = e−1(cos 1 + i sin 1) and equating real and imaginary parts, we get

PV

∫ ∞

−∞

cosx

x(x2 − 2x+ 2)
dx =

π

2
e−1(sin 1 + cos 1) (212)

PV

∫ ∞

−∞

sin x

x(x2 − 2x+ 2)
dx =

π

2
[1 + e−1(sin 1− cos 1)] (213)

Integration along a Branch Cut

Branch Point at z = 0 Here we examine integrals of the form
∫∞
0

f(x)dx, where the inte-
grand f(x) is algebraic but when it is converted to a complex function, the resulting integrand
f(z) has, in addition to poles, a nonisolated singularity at z = 0.
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Example: Integration along a Branch Cut Evaluate
∫∞
0

1√
x(x+1)

dx.

Solution: The above real integral is improper for two reasons: (i) an infinite discontinuity at
x = 0 and (ii) the infinite limit of integration. Moreover, it can be argued from the facts that
the integrand behaves like x−1/2 near the origin and like x−3/2 as x → ∞, that the integral
converges.

We form the integral
∮

C

1

z1/2(z + 1)
dz (214)

where C is the closed contour shown in Figure 6 consisting of four components. The integrand

Figure 6: (From the book)

f(z) of the contour integral is single valued and analytic on and within C, except for the simple
pole at z = −1 = eiπ. Hence we can write

∮

C

1

z1/2(z + 1)
dz = 2πiRes(f(z),−1) (215)

∫

CR

+

∫

ED

+

∫

Cr

+

∫

AB

= 2πiRes(f(z),−1) (216)

(217)

with f(z) = 1
z1/2(z+1)

. The segment AB coincides with the upper side of the positive real axis

for which θ = 0, z = xe0i; while, the segment ED coincides with the lower side of the positive
real axis for which θ = 2π, z = xe(0+2π)i, then

∫

ED

=

∫ r

R

(xe2πi)−1/2

xe2πi + 1
(e2πidx) (218)

= −
∫ r

R

x−1/2

x+ 1
dx (219)

=

∫ R

r

x−1/2

x+ 1
dx (220)

∫

AB

=

∫ R

r

(xe0i)−1/2

xe0i + 1
(e0idx) (221)

=

∫ R

r

x−1/2

x+ 1
dx (222)
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Now with z = reiθ and z = Reiθ on Cr and CR , respectively, it can be shown that

∫

Cr

→ 0 (223)

∫

CR

→ 0 (224)

as r → 0 and R → ∞, respectively. Then

lim
r→0,R→∞

[
∫

CR

+

∫

ED

+

∫

Cr

+

∫

AB

]

= 2πiRes(f(z),−1) (225)

is the same as

2

∫ ∞

0

1√
x(x+ 1)

dx = 2πiRes(f(z),−1) (226)

with
Res(f(z),−1) = z−1/2

∣

∣

z=eiπ
= e−πi/2 = −i (227)

then
∫ ∞

0

1√
x(x+ 1)

dx = π (228)

The Argument Principle and Rouché’s Theorem

Argument Principle Unlike the foregoing discussion in which the focus was on the eval-
uation of real integrals, we next apply residue theory to the location of zeros of an analytic
function.

Theorem (6.20): Argument Principle Let C be a simple closed contour lying entirely
within a domain D. Suppose f is analytic in D except at a finite number of poles inside C,
and that f(z) 6= 0 on C. Then

1

2πi

∮

C

f ′(z)

f(z)
dz = N0 −Np (229)

where N0 is the total number of zeros of f inside C and Np is the total number of poles of f
inside C. In determining N0 and Np , zeros and poles are counted according to their order or
multiplicities.
Proof: See pag. 363 in the book.

Theorem (6.21): Rouché’s Theorem Let C be a simple closed contour lying entirely
within a domain D. Suppose f and g are analytic in D. If the strict inequality |f(z)− g(z)| <
|f(z)| holds for all z on C, then f and g have the same number of zeros (counted according to
their order or multiplicities) inside C.
Proof: See pag. 365 in the book.

The Rouché’s Theorem is helpful in determining the number of zeros of an analytic function
(in a given region).
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