Series y residuos

Credit: This notes are 100% from chapter 6 of the book entitled A First Course in Complex
Analysis with Applications by Dennis G. Zill and Patrick D. Shanahan. Jones and Bartlett
Publishers. 2003.

Cauchy’s integral formula for derivatives indicates that if a function f is analytic at a point
20 , then it possesses derivatives of all orders at that point. As a consequence of this result we
shall see that f can always be expanded in a power series centered at that point. On the other
hand, if f fails to be analytic at z;, we may still be able to expand it in a different kind of
series known as a Laurent series. The notion of Laurent series leads to the concept of a residue,
and this, in turn, leads to yet another way of evaluating complex and, in some instances, real
integrals.

Sequences and Series

Sequences A sequence {z,} is a function whose domain is the set of positive integers and
whose range is a subset of the complex numbers C. If lim,_,. z, = L, we say the sequence
{zn} is convergent. In other words, {z,} converges to the number L if for each positive real
number € an N can be found such that |z, — L| < & whenever n > N. A sequence that is not
convergent is said to be divergent.

Z'n+1

=0.
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Example: The sequence {*—1} is convergent, lim,,

Theorem (6.1): Criterion for Convergence A sequence {z,} converges to a complex
number L = a+1ib if and only if R(z,) converges to (L) = a and J(z,,) converges to (L) = b.

3+in

Example Consider the sequence {= - on

Solution: it converges since,

3+ 2n?2+3n  n?—6n
= +1

T ntizn . em? 5n? M
R(zn) — % (2)
S(z) — é (3)

as n — 0.



Series An infinite series or series of complex numbers

o

Ya=amtmtt e (4)
k=1

is convergent if the sequence of partial sums {5, }, where
Sp=21+2+ -+ 2z, (5)

converges. If S, — L as n — oo, we say that the series converges to L or that the sum of the
series is L.

Geometric Series A geometric series is any series of the form
o
Zazk’l:a+az—|—az2+~-~+az"71+-~- (6)
k=1

the nth term of the sequence of partial sums is
S, =a+az+az* +---+az""! (7)

When an infinite series is a geometric series, it is always possible to find a formula for .S,,:

2S, = azr+az’+---+a @®)

Sp— Sy = (az+a 4t a) — (et azta’ 4ot a ) )
1 — 27

S.(1-2) = a-a" =a(l- ") = S, —ag o (10
—z

for n — oo, 2™ — 0 whenever |z| < 1, then S,, — a/(1 — z), then

a+az+a22+---+az"_1+---=1a (11)
-z
A geometric series diverges when |z| > 1.
Special Geometric Series
(i) Fora =1
— =ltzt S (12)
(ii) Fora=1and z — —=z
1+Z:1—z+22—23+--- (13)
(iii) Fora =1
1 — »m
S T N (14)
11—z
(iv) By writing 1112; = i + :Z we get
Zn

=1l+z2+224+22 4+ +2" 1+
11—z 11—z

(15)



Example The infinite series
N (T+20)F 1420 (1+26)?
K + ;
5 5 5

(16)
k=1
is a geometric series with a = (1 + 2¢) and z = (1 + 2¢). Since |z| = V/5/5 < 1, the series is

convergent
142 1

(14 20)* = :
> 5 12 ' (17)

k=1 5

Theorem (6.2): A Necessary Condition for Convergence If ) ° z; converges, then
limy,—oc2n = 0.

Theorem (6.3): The nth Term Test for Divergence If lim, ooz, # 0, then >~ 2
diverges.

Absolute and Conditional Convergence An infinite series y -, 2z is said to be abso-
lutely convergent if )~  |z;| converges. An infinite series > .-, 2 is said to be condition-
ally convergent if it converges but >~ |z diverges.

Absolute convergence implies convergence.

*

Example The series )~ 1z is absolutely convergent since the series ), |1z is the same

L
K2

as the real convergent p-series > -,

Tests for Convergence Two of the most frequently used tests for convergence of infinite
series are given in the next theorems.

Theorem (6.4): Ratio Test Suppose > -, 2 is a series of nonzero complex terms such

that

. Zn+1
lim
n—oo

=L (18)

Zn
(i) If L < 1, then the series converges absolutely.
(ii) If L > 1 or L = oo, then the series diverges.

(iii) If L = 1, the test is inconclusive.

Theorem (6.5): Root Test Suppose Y .-, 2 is a series of nonzero complex terms such that
Jim ]z, | = L (19)

(i) If L < 1, then the series converges absolutely.

(ii) If L > 1 or L = oo, then the series diverges.

(iii) If L =1, the test is inconclusive.

Power Series The notion of a power series is important in the study of analytic functions.
An infinite series of the form

Zak(z—zo)k:a0+a1(z—zo)+a2(z—z0)2+-~- (20)
k=1

where the coefficients a;, are complex constants, is called a power series in z — 2. It is said to
be centered at zg, called the center of the series.



Circle of Convergence Every complex power series Y -, ax(z — z0)* has a radius of con-
vergence and a circle of convergence, which is the circle centered at zy of largest radius
R > 0 for which the series converges at every point within the circle |z —zg| = R. A power series
converges absolutely at all points z within its circle of convergence, that is, for all z satisfying
|z — 20| < R, and diverges at all points z exterior to the circle, that is, for all z satisfying
|z — 29| > R. The radius of convergence can be:

(i) R =0 (in which case the serie converges only at its center z = 2 ),

(ii) R a finite positive number (in which case the serie converges at all interior points of the
circle |z — 29| = R), or

(iii) R = oo (in which case the serie converges for all z).

A power series may converge at some, all, or at none of the points on the actual circle of
convergence.

Example Consider the power series Y.~ Zkl: . By the ratio test,
Znt2
lim |2 | = lim —— 2] = || (21)
n—o0 z”n —oom + 1
Thus the series converges absolutely for |z| < 1. The circle of convergence is |z| = 1 and
the radius of convergence is R = 1. On the circle of convergence |z| = 1, the series does not

converge absolutely since y ,- | % is the well-known divergent harmonic series.
For a power series >, ar(z — 20)", the limit depends only on the coefficients aj. Thus, if

An4-1
an

= L # 0, the radius of convergence is R = 1/L. Esto es asi porque para que

=lim 2R = LR < 1.

(i) lim, 00

an+1|z_zo|n-H

an|z—z0|™

la serie converja el cociente lim

an+41

(ii) limy, 00 = 0, the radius of convergence is R = 0o

Ant-1

(iil) limy, 00 = 00, the radius of convergence is R = 0

Similar conclusions can be made for the root test.

Example Consider the power series Y .-, #(z — 1 — ). With the identification a, =
(—=1)"*/n! we have

(_1)n+2 1
. (n+1)! — T _
| T | = i = %)
Hence the radius of convergence is co; the power series with center zy = 1 4 ¢ converges

absolutely for all z, that is, for |z — 1 —i| < occ.

Example Consider the power series .-, (Gk—“)k (z—2d)%. With a, = (£2£1)", the root test

2k+5 2n+5
gives
6n+1
lim {/]a,| = li =3 23
Mim Vel = lim 57— (23)

Then, the radius of convergence of the series is R = 1/3. The circle of convergence is |z — 2i| =
1/3; the power series converges absolutely for |z — 2i| < 1/3.

The Arithmetic of Power Series Some facts

e A power series Y .- ai(z — 2)F can be multiplied by a nonzero complex constant ¢
without affecting its convergence or divergence.
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e A power series > - ar(z — 29)* converges absolutely within its circle of convergence. As
a consequence, within the circle of convergence the terms of the series can be rearranged
and the rearranged series has the same sum L as the original series.

e A power series >, ar(z — 20)F and Y4, br(z — 20)* can be added and subtracted by
adding or subtracting like terms. In symbols:

Zak(z—zo)kiz:bk (z — 20)F Z ay £ b) (2 — 2)" (24)
k=0 k=0 k=0

If both series have the same nonzero radius R of convergence, the radius of convergence
of 3707 o(ax £ br)(z — 20)* is R.

e Two power series can (with care) be multiplied and divided.

Taylor Series

Throughout the discussion in this section we will assume that a power series has either a positive
or an infinite radius R of convergence.

Differentiation and Integration of Power Series The three theorems that follow indicate
a function f that is defined by a power series is continuous, differentiable, and integrable within
its circle of convergence.

Theorem (6.6): Continuity A power series >, ax(z — 20)" represents a continuous func-
tion f within its circle of convergence |z — 29| = R

k can be

Theorem (6.7): Term-by-Term Differentiation A power series Y, ax(z — 29)
differentiated term by term within its circle of convergence |z — zo| = R

It follows as a corollary to Theorem 6.7 that a power series defines an infinitely differentiable
function within its circle of convergence and each differentiated series has the same radius of

convergence R as the original power series.

Theorem (6.8): Term-by-Term Integration A power series ;- ax(z — 2p)* can be in-
tegrated term-by-term within its circle of convergence |z — zy| = R, for every contour C lying
entirely within the circle of convergence.

The theorem states that

/Czak z— z) dz-Zak/C(z—zo)kdz (25)

k=0

whenever C' lies in the interior of |z — zp| = R. Indefinite integration can also be carried out
term by term:

/Z%Z—Zo dz—zak/Z—Zo =

The ratio test can be used to be prove that both

Z ap(z — z)" (27)

k=0

oo

20)* + constant  (26)




and

— k41
> e =)
p k+1

have the same circle of convergence |z — zy| = R.

(28)

Taylor Series Suppose a power series represents a function f within |z — 29| = R, that is,

flz) = Zak(z — ) =ag+ai(z — %) +as(z — %) +as(z — 2)> +---

k=0

It follows from Theorem 6.7 that the derivatives of f are the series

f'(z) = Z ark(z — 20)* 7 = ay + 2a9(z — 20) + 3as(z — z)* + - - -
k=1

o0

f(z) = Z ark(k —1)(z — 20)" 2 =2-1ay + 3 - 2a3(z — 20) + - - -

k=2

(29)

Since the power series f(z) = > po,ar(z — 20)" represents a differentiable function f within
its circle of convergence |z — zg| = R, where R is either a positive number or infinity, we
conclude that a power series represents an analytic function within its circle of convergence.

By evaluating the derivatives at z = zy we get,

f(z0) = ao
f'(z0) = 1llag
["(z0) = 2lay
1" (20) 3las
In general,
™ ()

with n > 0. Then

This series is called the Taylor series for f centered at z.

Maclaurin series It is the Taylor series for zg = 0,

O fk)
foy = 0

k=0

(37)



Theorem (6.9): Taylor’s Theorem Let f be analytic within a domain D and let 25 be a
point in D. Then f has the series representation

S F) (2, )
fey =3 T ) (59)

valid for the largest circle C' with center at z; and radius R that lies entirely within D.
Proof: See pag. 316 of the book.

We can find the radius of convergence of a Taylor series as the distance from the center z
of the series to the nearest isolated singularity of f. Where, an isolated singularity is a point
at which f fails to be analytic but is, nonetheless, analytic at all other points throughout some
neighborhood of the point. For example, z = 5i is an isolated singularity of f(z) = 1/(z — 5i).
If the function f is entire, then the radius of convergence R = co.

Some Important Maclaurin Series

22 = 2
es = +i+§+” = E (39)
k=0
3 L5 N
‘ = L4z = Y 40
A TR kz%( T (40)
2 A ok
cosz = 1—§+E—~-~:kz%(—) o] (41)

Example Suppose the function f(z) = (3 —1i)/(1 —i+ z) is expanded in a Taylor series with
center zg = 4 — 2i. What is its radius of convergence R 7

Solution: Observe that the function is analytic at every point except at z = —1 + ¢, which is
an isolated singularity of f. The distance from z = —1 + i to zg =4 — 2i is

2=zl = VL AP T (1- (-2)? = V3= R (42)

The power series expansion of a function, with center zg, is unique. On a practical level this
means that a power series expansion of an analytic function f centered at zy , irrespective of
the method used to obtain it, is the Taylor series expansion of the function.

Example For example, we can obtain

2 4 0 2k

o N2
cosz = 1 ST = g( ) o] (43)
by simply differentiating
. o0 L Rk
i - L, 4z = e~ 44
A I kzzo( N oT (44)

term by term.



Example For example, the Maclaurin series for e can be obtained by replacing the symbol
z in

e = 1+1,+—+ Zk, (45)
by 2%i.e.
2 22 © (. 2\k
2 _ ) &) N &)
k=0
2 A 0 2k
— 1+ﬂ+§+...zzﬂ (47)
k=0
Example Find the Maclaurin expansion of f(z) = (1_;2)2
Solution: From,
=1+z+22+28 4+ (48)

11—z
valid for |z| < 1, we differentiate both sides with respect to z to get

(1_2)2:1+2z+322+...22kzk_1 (49)

Since we are using Theorem 6.7, the radius of convergence of the last power series is the same
as the original series, R = 1.

Example We can often build on results such as the above one. For example, if We want the
Maclaurin expansion of f(z) = - Z)Q, we simply multiply the above equation by 23

:z3+224+3z5+~-~22kzk+2 (50)

(1—2)?

Its radius of convergence is still R = 1.

Example Expand f(z) = 1/(1 — z) in a Taylor series with center zy = 2.
Solution: By using the geometric series we have

1 1 1
= — = : : (51)
1—=2 1—242i—2i 1—2i—(z—2i)
1 1
= 52
1-2i1 - = (52)
Next, we use the power series by replacing z — 1= 22,
1 1 1
= : 53
1— 2z ; z2—21 ( )
N S PO O 2+z—2¢+ 2 —2i 3+ (54)
o 1—2i 1—2¢ 1—2 1—2¢ 1—2
1 z—2i z —2i)?
= + +< )+ (55)

1—2 ' (1—2i)%  (1—2i)

Because the distance from the center zy = 2i to the nearest singularity z = 1 is v/5, we conclude
that the circle of convergence is |z — 2i| = /5.



Remark As a consequence of Theorem 5.11, we know that an analytic function f is infinitely
differentiable. As a consequence of Theorem 6.9, we know that an analytic function f can
always be expanded in a power series with a nonzero radius R of convergence. In real analysis,
a function f can be infinitely differentiable, but it may be impossible to represent it by a power
series.

Laurent Series

If a complex function f fails to be analytic at a point z = zy, then this point is said to be a
singularity or singular point of the function. For example, the complex numbers z = +2¢
are singularities of the function f(z) = 2/(2? + 4); the nonpositive x-axis and the branch point
z = 0 are singular points of Lnz. In this section we will be concerned with a new kind of
“power series” expansion of f about an isolated singularity z,.

Isolated Singularities Suppose that z = 2 is a singularity of a complex function f. The
point z = zj is said to be an isolated singularity of the function f if there exists some deleted
neighborhood, or punctured open disk, 0 < |z — zy| < R of 2z throughout which f is analytic.
For example, z = +2i are isolated singularities of f(z) = 2/(z* +4). On the other hand, the
branch point z = 0 is not an isolated singularity of Lnz. We say that a singular point z = 2
of a function f is nonisolated if every neighborhood of 2, contains at least one singularity of
f other than zy. For example, the branch point z = 0 is a nonisolated singularity of Lnz.

Series with negative powers If z = 2, is a singularity of a function f, then certainly f
cannot be expanded in a power series with z; as its center. However, about an isolated singu-
larity z = 2z , it is possible to represent f by a series involving both negative and nonnegative
integer powers of z — z,

a_o a_q

fz) = ---+(Z_ZO)2+Z_ZO+ao+a1(z—zo)+a2(z—20)2---

— Z a_p(z — 20) " + Z ar(z — 2)" (56)

1

2—20

The series with negative powers is called principal part and will converge for

‘ <k,
i.e. |z — zg| > 1/r* = r. The part of nonnegative powers is called the analytic part and will
converge for |z — zy| < R. Then, the sum converges when z is a point in an annular domains
defined by r < |z — 29| < R.

Example The function f(z) = sinz/2z* is not analytic at the isolated singularity z = 0 and
hence cannot be expanded in a Maclaurin series. Since sin z is an entire function with Maclaurin
series given by,

) 2 2
smz:z—§+5—ﬁ+'“ (57)
for |z| < oo, we have
sin z 1 1 z 23
_ - - - L= 58
1) z4 23 3!z+5! 7!+ (58)

The analytic part of this series converges for |z| < co. The principal part is valid for |z| > 0.
Thus, it converges for all z except at z =0, i.e. 0 < |z] < 0.



Theorem (6.10): Laurent’s Theorem Let f be analytic within the annular domain D
defined by r < |z — z9| < R. Then f has the series representation

o0

f2) = ) a(z—z)" (59)

k=—00

valid for r < |z — 29| < R. The coefficients aj, are given by

ap = =S 7!0 Ads (60)

270 Jo (5 — zp)kt!

with £k = 0,+1,---, where C is a simple closed curve that lies entirely within D and has z; in
its interior. See Figure 1
Proof: See pag. 327 in the book.

Figure 1: (From the book)

Regardless how a Laurent expansion of a function f is obtained in a specified annular domain
it is the Laurent series; that is, the series we obtain is unique.

In the case when a_, = 0 for £k = 1,2,3,---, the principal part of the Laurent series is
zero and it reduces to a Taylor series. Thus, a Laurent expansion can be considered as a
generalization of a Taylor series.

Example Expand f(z) = ﬁ in a Laurent series valid for the following annular domains:
(a) 0< |zl <1

(b) 1 < |z]
(c)0<]z—1<1
(d) 1< |z—1]
(a) We expand the geometric series 1/(1 — z) valid for |z| < 1,
1 1
_ 1 1
o) =~ (61)
1
= —;[1+z+z2—|—z3+-~-] (62)
1
= = —1—z—-22—... 63
. z—z (63)

which converges for 0 < |z| < 1.
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(b) To obtain a series that converges for 1 < |z|, we start by constructing a series that
converges for [1/z] <1=1<|z|,

f(z) = 211 (64)
1 11

= S |l+o+5+ (65)
11 1

= S+ ++- (66)

(c) We rewrite f(z) and proceed like in (a),

1
1@ = a5 96-1 (67)
_ 1 1 8
Coz—114+(2—1) (©8)
_ zil[l—(z—1)+(z—1)2—(z—1)3+-~-] (69)
- Zi1_1+@—1ywz—n2w~ (70)

The requirement that z # 1 is equivalent to 0 < |z — 1|, and the geometric series in brackets
converges for |z — 1| < 1. Thus the last series converges for z satisfying 0 < |z — 1] and
|z — 1| < 1, that is, for 0 < |z — 1| < 1.

(d) Proceeding as in part (b), we write

1

e = (=11 +(2—-1)) (71)
1 1
BERCE (72)
1 1 1 1
— (2_1)2 1_2—1+(Z—1)2_(z—1)3+“. (73)
1 1 1
- - + - ... (74)

(=12 (=17 (z-1°

Because the series within the brackets converges for [1/(z — 1)| < 1, the final series converges
for 1 < |z —1].

Example Expand f(z) = m in a Laurent series valid for:
(a) 0 < |z—1] <2 and

(b) 0 < |z —3| < 2.

Solution:

11



(a) We need to express z — 3 in terms of z — 1

1
= 75
f(Z) (Z—1>2<Z—3) ( )
1 1
(2 —1)2 [—2+(z—1)] (76)
—1 1
S TEEE [1_%1} (77)
~1 s—1 (z—1\* [z-1\°
= —— |1
e | () (B ¢ (79)
1 1 1 1
S - (1) - 79
G-17 1-1 s 16" Y (79)
(b) To obtain powers of z — 3, we write z — 1 =2+ (z — 3) and
1
= 0
1
= 2 —3)] 1
L2+ (z-3) (s1)
1 z—3]77
= 1 82
4(z —3) [ * 2 } (82)
1 (=2) [2=3\ (=2)(=3) [z—3\"
= 1
-3 | "1 ( 2 )+ 2l > ) T
1 1 3 1 ,
= m 4+16( —3)—5(2—3) + - (83)
where we have used the binomial series ((1+2)® = 14 az+ 212 p o0zDO2 5 4 4alid
for |z] < 1). The binomial expansion is valid for |(z — 3)/2| < 1 ie. |z —3] <2
Example Expand f(z) = Z%H) in a Laurent series valid for 0 < |z] < 1.
Solution: by partial fractions we write
8z +1
e = oy (54)
1 9
— = 85
z * 1—=2 (85)
1 2
= ;+9+9z+9z + - (86)

the geometric series converges for |z| < 1, but due to the term 1/z, the resulting Laurent series
is valid for 0 < |z| < 1.

Example Expand f(z) = €%7 in a Laurent series valid for 0 < |z| < oc.
Solution: For all finite |z| < oo, is valid the expansion
2

e=1+2z+ 5 +- (87)

We obtain the Laurent series f by simply replacing z — 3/z, for z # 0,
143 i 88
=14+ 55+ (88)

valid for 0 < |z| < o0.
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Zeros and Poles

We will assign different names to the isolated singularity z = zy according to the number of
terms in the principal part of the Laurent series.

Classification of Isolated Singular Points. An isolated singular point z = 2, of a complex
function f is given a classification depending on whether the principal part of its Laurent
expansion contains zero, a finite number, or an infinite number of terms (Table 1):

(i) Removable singularity: If the principal part is zero, that is, all the coefficients a_; are
zero, then z = z; is called a removable singularity.

(ii) Pole: If the principal part contains a finite number of nonzero terms, then z = z is called
a pole. If, in this case, the last nonzero coefficient is a_,, , n > 1, then we say that z = z; is a
pole of order n. If z = 2 is pole of order 1, then the principal part contains exactly one term
with coefficient a_;. A pole of order 1 is commonly called a simple pole.

(iii) Essential singularity: If the principal part contains an infinitely many nonzero terms,
then z = zj is called an essential singularity.

| 2= 2 | Laurent series for 0 <[z — 2| <R |

Removable singularity | ag + a1(z — 20) + as(z — 20)* + - - -

Pole of order n ottt e Fagtan(z —z0) +

(z—z0)™ z—

a_1
zZ—20

Simple pole +ag+ai(z — ) + - -

Essential singularity et =2 tagt+a(z—2)+ -

(z—20)

Table 1: From the book.

Removable Singularity In the series,

sin z 22 24

S I
z 3!+5! (89)

that all the coefficients in the principal part of the Laurent series are zero. Hence z = 0 is a
removable singularity of the function f(z) = (sinz)/z.

If a function f has a removable singularity at the point z = zy , then we can always supply
an appropriate definition for the value of f(zy) so that f becomes analytic at z = z, . For
instance, since the right-hand side of the series expansion of (sinz)/z is 1 when we set z = 0,
it makes sense to define f(0) = 1. Hence the function f(z) = (sinz)/z, as given by

sin z 22 4

1
z 3!+5! (90)

is now defined and continuous at every complex number 2. Indeed, f is also analytic at z = 0
because it is represented by the Taylor series 1 — 22/3! + 2% /5! — ... centered at 0.
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Example

(i)

sinz 1 2z 22
- _ 4z . 91
22 z 3!+5! (91)
sin z 1 1 z
e S e S 92
24 23 3!z+5! (92)

for 0 < |z| < oo, the z = 0 is a simple pole of the function f(z) = (sin z)/2? and a pole of order
3 of the function g(z) = (sinz)/z*.
(ii) The expansion of f of the Example 3 of Section 6.3 valid for 0 < |z — 1| < 2 was given by
the equation

1 1 1 1 z2-1

f<z>:(2—1)2(2—3):_2(2—1)2_4(2—1)_§_T_”' (93)

Then, z = 1 is a pole of order 2.

(iii) The value z = 0 is an essential singularity of f(z) = €%/~

Zeros A number 2z is zero of a function f if f(z9) = 0. We say that an analytic function f
has a zero of order n or a zero of multiplicity n at z = z; if

f(z0) = 0 (94)
f'(z) = 0 (95)
(=) =0 (96)
: (97)
f N (z) = 0 (98)
but
F"(z0) #0 (99)

A zero of order 1 is called a simple zero.

Example For f(z) = (2 —5) we see that f(5) =0, f'(5) =0, f”(5) =0, but f”(5) =6 # 0.
Thus f has a zero of order (or multiplicity) 3 at zo = 5.

Theorem (6.11): Zero of Order n A function f that is analytic in some disk |z — zo| < R
has a zero of order n at z = z; if and only if f can be written

f(2) = (2= 20)"9(2) (100)

where ¢ is analytic at z = z5 and ¢(zp) # 0

Example The analytic function f(z) = zsin 2% has a zero at z = 0. If we replace z by 2% in
the series expansion of sin z we get

. LTl

f(z) = zstz:z?’—ngH—--- (101)
24 28

_ Sp-falo (102)

= 22¢(2) (103)

with ¢(0) =1 # 0, then z = 0 is a zero of f of order 3.
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Theorem (6.12): Pole of Order n A function f analytic in a punctured disk 0 < |z — 2| <
R has a pole of order n at z = z; if and only if f can be written

fla) = 2

G-y o

where ¢ is analytic at z = zg and ¢(29) # 0.

More about zeros A zero z = zy of an analytic function f is isolated in the sense that
there exists some neighborhood of zy for which f(z) # 0 at every point z in that neighborhood
except at z = z5. As a consequence, if zg is a zero of a nontrivial analytic function f , then the
function 1/f(z) has an isolated singularity at the point z = 2 .

Theorem (6.13): Pole of Order n If the functions ¢ and h are analytic at z = 2y and h
has a zero of order n at z = 25 and g(zp) # 0, then the function f(z) = g(2)/h(z) has a pole of
order n at z = zp.

Examples
(i) The rational function S
z+
f(z) = (z—=1)(z4+5)(z —2)* (105)
shows that the denominator has zeros of order 1 at z = 1 and z = —5, and a zero of order 4
at z = 2. Since the numerator is not zero at any of these points, it follows that f has simple
poles at z =1 and z = —5, and a pole of order 4 at z = 2.

(i) The value z = 0 is a zero of order 3 of zsin2?. Then, we conclude that the reciprocal
function f(z) = 1/(zsin 2?) has a pole of order 3 at z = 0.

Remarks

(i) From the preceding discussion, it should be intuitively clear that if a function f has a pole
at z = zg , then | f(2)] — oo as z — 2o from any direction and we can write lim,_,,, f(z) = oo.
(ii ) A function f is meromorphic if it is analytic throughout a domain D, except possibly
for poles in D. It can be proved that a meromorphic function can have at most a finite number
of poles in D. For example, the rational function f(z) = 1/(2* + 1) is meromorphic in the
complex plane.

Residues and Residue Theorem

Residue The coefficient a; of 1/(z — 29) in the Laurent series is called the residue of the
function f at the isolated singularity zp, noted as a; = Res(f(z), 2o).

Examples
(i) z = 1 is a pole of order two of the function f(z) = m From the Laurent series
obtained above valid for the deleted neighborhood of z = 1 defined by 0 < |z — 1| < 2,

o-1/2 —1/4 1 21
f(z)—(z_1>2+ — 3= g T (106)

z—1
we have Res(f(z),1) = —1/4.
(ii) z = 0 is an essential singularity of f(2) = ¢**. From its Laurent series

2

3 3
3/z
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valid for 0 < |z] < oo, we get Res(f(z),0) = 3.
The following theorem gives a way to obtain the residues of a function f without the
necessity of expanding f in a Laurent series.

Theorem (6.14): Residue at a Simple Pole If f has a simple pole at z = z, , then

Res(f(2),20) = lim (2 — z0) f(2) (108)

Z— 20

Prof: Since f has a simple pole at z = z; , its Laurent expansion convergent on a punctured
disk 0 < |z — 29| < R has the form

f@>=zi;0+%+amz—%>+~- (109)

where a; # 0. By multiplying both sides of this series by z — zp and then taking the limit as
z — 2y we obtain the above relation.

Theorem (6.15): Residue at a Pole of Order n If f has a pole of order n at z = 2z ,
then

1 ) dn—l .
Res(f(z),20) = = 1) Zh_glo W(Z —20)"f(2) (110)
Proof: See pag. 344 of the book.
Example The function f(z) = Wl(z—g) has a simple pole at z = 3 and a pole of order 2 at

z = 1. Find the residues.
Solution: Since z = 3 is a simple pole, we have:

) . 1 1
Res(f(2),3) = lim(> = 3) f(2) —ll_lgm =1 (111)
For the pole of order 2, we have

1 ) d2—1 )

Res(f(:1.1) = =5 m s 2 = D) (112)
1
= lim—(z —1)? 113
Bl Gl e T pop (113)
d 1
= lim — 114
2 dz (z —3) (114)
-1 -1

When f is not a rational function, calculating residues by means of the above limits can
sometimes be tedious. An alternative residue formula can be obtain if the function f can be
written as a quotient f(z) = g(2)/h(z), where g and h are analytic at z = zo. If g(20) # 0 and
if the function A has a zero of order 1 at zy, then f has a simple pole at z = 2, and

9(20)
Res(f(z), ZO) = h/(Z(]) (116)
Proof: Let us write the derivative of h
W(z) = lim h(z) — h(z0) — lim =) (117)
Z—r20 z — ZO Z2—20 2 — ZO



by using the definition of residues and h(zp) = 0, we get

Res(f(2),20) = lim (2 — 20)f(2) (118)
= lim(z — 2 @
= lmlz=20)5) (119)
_g(2)
= In 5y (120)
= Jm h(gfigzm (121)
_ 9(20) 0
- () (122)

Example The polynomial z* + 1 can be factored as (z — 21)(z — 22)(2 — 23)(2 — 24), where

2 = €Y 2y = 3z = 57/4 and z = €77/* are its four distinct roots. Then, the

function f(z) = 1/(z* + 1) has four simple poles. By using Res(f(2),2) = }i’,(f;))) we get

1 1 1 1

Res(f(z),z1) = — = e — 123
1 1 1 1
Res(f(2),20) = —=—-e "= _—_ _j 124
1 1 , 1 1
Res(f(2),2z3) = —==—e ™™= _—_ 4 —_ 125
1 1 , 1 1
R ’ — i —2lim/4 - + . 126
Alternatively we can use the expression lim, ,,,(z — 29) f(2) for each, pole
1
Res(f(z),z) = lim(z — z 127
(7)) = e = 2) e (127)
for example,
1
Res(f(z),z1) = lim(z—z
(F(z):21) z%n( 1>(Z—Zl>(2—22)<2—2}3>(2—2}4)
1
(a2 z) (21— )

1
(eiﬂ'/4 _ €3i7r/4)<€i7r/4 _ e5i7r/4)<ei7r/4 _ €7i7r/4)

. . 1 . 1
and then, work out the above expression to reduce it to —: i1

Theorem (6.16): Cauchy’s Residue Theorem Let D be a simply connected domain and
C a simple closed contour lying entirely within D. If a function f is analytic on and within C,
except at a finite number of isolated singular points z1, 29, - - - , 2, within C', then

%Cf(z)dz = 27?2’2 Res(f(2), zx) (128)

Proof: Suppose C4,Cy,---,C, are circles centered at zq, 29, -, 2, , respectively. Suppose
further that each circle Cj has a radius r; small enough so that C;,Cs, - - -, C),, are mutually

17



Figure 2: n singular points within contour C' (From the book)

disjoint and are interior to the simple closed curve C', Fig. 2. We known from earlier develop
that fck f(2)dz = 2miRes(f(z), z), and so by Theorem 5.5 we have

fg f2)dz =" i f(2)dz =2y Res(f(2), z) (129)

Example Evaluate §, mdz for the following two contours:
(i) a rectangle defined by z =0, x =4,y = -1,y =1,
(ii) the circle |z| = 2.

Solution:
(i) Since both z =1 and z = 3 are poles within the rectangle we have
7€ — 1;(2 s = 2wilRes(f(2).1) + Res(f(2).9) (130)
= 2mi {T ﬂ =0 (131)
(132)

(ii) Since only the pole z = 1 lies within the circle |z| = 2, we have

1 .
%C CEneE 3)dz = 2miRes(f(2),1) (133)

-1 s
= 9| — ) = —i= 134
7rz<4) i5 (134)
2246

Example Evaluate ¢, % —;dz where the contour C is the circle |z —i| = 2:
Solution: By factoring the denominator as 2% + 4 = (z — 2i)(z + 2i) we see that the integrand
has simple poles at —2¢ and 2i. Because only 2¢ lies within the contour C', we get

fg ij iidz — miRes(f(2), 2i) (135)
= 27 (3 ;22) =7(3+12) (136)

18



z

Example Evaluate §, so5sdz where the contour C is the circle || = 2:
Solution: By factoring the denominator as z* + 523 = 23(z + 5) we see that the integrand has
a pole of order 3 at z = 0 and a single pole at z = —5. But only the first one is inside C', then

ﬁﬁdz = 2miRes(f(z),0) (137)
2 o
= 2migy i o (138)
&2, e
= WZLIL%@Z T (139)
2z
L (140)

©5 dz? (z+5)
(22 + 82+ 17)e?

= i ilir(l) Z15)° (141)
17
= = (142)
125
Example Evaluate ¢, tan zdz, where the contour C' is the circle |z| = 2.
Solution: The integrand f(z) = tanz = sinz/cosz has simple poles at the points where
cosz=0,ie z=(2n+1)7/2, n=0,%£1,--- . Since only —7/2 and 7/2 are within the circle
|z| = 2, we have
% tan zdz = 2mi [Res(f(z), —m/2) + Res(f(2),7/2)] (143)
c
With the identifications g(z) = sin z, h(z) = cos z, and h'(z) = —sin 2z, we get
(/0 : 5
7{ tanzdz = 2mi SH.1< ™/2) + SH,1<7T/ ) (144)
c —sin(—n/2)  —sin(7/2)
= 2mi[—1+ (—1)] = —4mi (145)

Example Evaluate § e¥*dz, where the contour C is the circle |z] = 1.
Solution: z = 0 is an essential singularity of the integrand f(z) = €3/# and so neither of the
two above procedure are applicable to find the residue of f at that point. Nevertheless, we saw

demonstrate above that 5 52
14 S 4 146
¢ + z + 2122 + (146)

ie. Res(f(z),0) =a_y; =3. From,

%f(z)dz = 27?2’2 Res(f(2), zx) (147)

where z; are the isolate singularities of f, we get

fe?’/zdz = 2m'zn: Res(f(2), zx) = 2miRes(f(z),0) = 6mi (148)
¢ k=1

19



Some Consequences of the Residue Theorem

Evaluation of Real Trigonometric Integrals

Integrals of the Form fo% F(cos0,sin@)df The basic idea here is to convert a real trigono-
metric integral into a complex integral, where the contour C' is the unit circle |z| = 1 centered
at the origin.

We begin by parametrizing the contour by z = e? | 0 < # < 2, then

dz = ied (149)
i, ,—if
cos = % (150)
619 _ e—i@
i = — 151
sin 0 5 (151)
or
dz
dd = — 152
12 ( g )
1
cosf = é(z+zfl) (153)
1
sinf) = %(2—2_1) (154)
then
2 1 Az
F(cosf,sin0)df — z+z D, —(z—2z"1)= (155)
0 21 12

where C'is the unit circle |z| = 1.

Example Evaluate fo% mdﬁ

Solution: using the above substitutions we get

1 dz

1 dz
hetadR - - 156
7{C[Q+%(z+z—1)]2 iz %c +Z2+1)2 iz (156)
4
= = 157
z?i 22+4z—|—1 (157)
4
= - d 158
z?i [(z — 21) z—zg)P ® (158)

with z; = =2 — v/3 and 2z, = —2 + /3. Because only 2, is inside the unit circle C', we have

1 dz 4 z
farers © b 1)
4 z
_ ;7{ e (160)
= %271’iR€8(f(Z),212) (161)
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where

Res(f(2). ) = lim dilz(z —2)'/(2) (162)
B zh—>nzlg dilz<z — 2) (z — 21)22(2 L) (163)
= d%ﬁ (164)
= (;z__zlz)lz = 6\1/5 (165)
then

£[2+%(21+ 21)12% N %WRGS(f(z),za) (166)
= ?m% (167)
- 34% (168)

and, finally, .
/0 2+ Clos 9)2‘” B 34\7/% (169)

Evaluation of Real Improper Integrals

Integrals of the Form [~ f(x)dz Suppose y = f(z) is a real function that is defined and
continuous on the interval [0, 00) defined as

/: f(z)dz = /Ooo f(x)dz + /Ooo flx)de =1 + I, (170)

with

L o= /Ooof(:c)d:c: lim /ORf(:c)d:c (171)

R—oc0

R——o0

L = /Ooof(x)dx: lim /lf(:p)d:p (172)

provided both integrals I; and I are convergent. If either one, I; or Iy , is divergent, then
ffooo f(z)dz is divergent. It is important to remember that the above definition for the improper

integral is not the same as limp_, ffR f(z)dx.
For the integral f_oooo f(x)dx to be convergent, the limits
limp_eo fOR f(z)dx and limp_, o fi) r J(x)dr must exist independently of one another. But, in

the event that we know (a priori) that an improper integral ffooo f(x)dx converges, we can then
evaluate it by

/_ Z f(2)dz = lim /_ z fla)dw (173)

R—oc0

On the other hand, the symmetric limit limp o LRR f(z)dz may exist even though the
improper integral [*_ f(x)dx is divergent.
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The limit in

lim /_Rf(:v)dx (174)

R—o0

if it exists, is called the Cauchy principal value (P.V.) of the integral and is written

PV /_ : f(@)dz = lim /_ i f(w)dz (175)

R—o0

Cauchy Principal Value When an integral of form ffooo f(x)dx converges, its Cauchy prin-
cipal value is the same as the value of the integral. If the integral diverges, it may still possess
a Cauchy principal value.

About even functions Suppose f(z) is continuous on (—oo,00) and is an even function,
that is, f(—z) = f(x). If the Cauchy principal value exists,

/OOO @)z %P.V. /_Z f(w)dz (176)
/_ Z f(@)dz = PV, /_ Z F(x)da (177)

About evaluation of the improper integral To evaluate an integral

J75 f(z)dx, where the rational function f(z) = p(x)/q(z) is continuous on (—oc0, 00), by residue
theory we replace x by the complex variable z and integrate the complex function f over a closed
contour C' that consists of the interval [—R, R] on the real axis and a semicircle Cr of radius
large enough to enclose all the poles of f(z) = p(z)/q(z) in the upper half-plane Im(z) > 0,
Fig. 3. By Theorem 6.16 we have

Figure 3: (From the book)

R
% f(z)dz = f(z)dz + / f(z)dx (178)
c Cr -R
= ZWiZRes(f(z),zk) (179)
k=1
where 2, , k =1,2,--- ,n denotes poles in the upper half-plane. If we can show that the integral

Je, f(2)dz — 0 as R — oo, then we have

P.V. /_OO flz)dz = I%i_r)go/_Rf(x)dx (180)
= 2mi Y Res(f(2), ) (181)
k=1
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Example Evaluate the Cauchy principal value of ffooo mdm
Solution: let us write

1 1

T = i@ 9 " GGG —30G 130 e

we take C' be the closed contour consisting of the interval [—R, R] on the z-axis and the
semicircle C'r of radius R > 3.

R
f f(z)dz = / f(z)dz + f(z)dz =1+ I, (183)
C -R Cr
— omi[Res(f(2), ) + Res(f(2),3)] = 2mi (1%@ _ 4%2)
- = (184)

We now want to let R — oco. Before doing this, we use the following inequality valid in the
contour C'g

(2% + 1)(" +9)| = [|2%] = 1| - [|2*] = 9] = (R* = 1)(R* - 9) (185)

Since the length L of the semicircle is 7w R, it follows from the M L-inequality, Theorem 5.3, that

|| =

1 TR
/CR (224 1)(2249) = (R2—1)(R?—9) (186)

Then, |I3] — 0 as R — oo, and so

lim I, = 0 (187)
R—oo
(188)
and then,
. T
Al = 8
Finally,
R oo
1 1 T
li dr = P.V. dr = — 190
Rosns _p (22 +1)(22+9) ! /_oo (22 +1)(22 4+ 9) T 190

Because the integrand f(z) is an even function, the existence of the Cauchy principal value
implies that the original integral converges to /12, i.e.

/Oo (22 +1)(22 + 9)dx 12 (191)

Sufficient conditions under which the contour integral along C'r approaches zero as R — oo
is always true are summarized in the next theorem.

Theorem (6.17): Behavior of Integral as R — oo Suppose f(z) = p(z)/q(z) is a rational
function, where the degree of p(z) is n and the degree of ¢(z) is m > n+2. If Cy is a semicircular
contour z = Re’? | 0 < 0 <, then fCR f(2)dz — 0 as R — oo.
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Example Evaluate the Cauchy principal value of ffooo x%de.

Solution: The conditions given in Theorem 6.17 are satisfied. f(z) = 1/(2* + 1) has simple

poles in the upper half-plane at z; = e™/* and z, = €3™/4, with residues
Res(f(),2) i (192)
es(f(2),z1) = ——=—1
1 PN
1 1

Res(f(z), z — - 193

then -
PV /_OO . 1d:zc = 2mi[Res(f(2),z1) + Res(f(z), z2)] = % (194)

Since the integrand f(z) is an even function, the original integral converges to 7/v/2, i.e.

< 1 T
——dr = —= 1
/mx4+1x V2 1)

Fourier Integrals: [* f(z)cosazdr and [ f(z)sinaxdr Fourier integrals appear as
the real and imaginary parts in the improper integral ffooo f(x)edr.
We can write

/00 f(z)e dx = /OO f(z) cosaxdx +i /OO f(z) sin axdz (196)

whenever both integrals on the right-hand side of converge. Suppose f(z) = p(z)/q(x) is
a rational function that is continuous on (—oo,00). Then both Fourier integrals in can be
evaluated at the same time by considering the complex integral | of (2)e"**dz, where a > 0,
and the contour C' consists of the interval [—R, R] on the real axis and a semicircular contour
Cr with radius large enough to enclose the poles of f(z) in the upper-half plane.

The next theorem gives sufficient conditions under which the contour integral along Cg
approaches zero as R — oo.

Theorem (6.18): Behavior of Integral as R — oo Suppose f(z) = p(z)/q(z) is a rational
function, where the degree of p(z) is n and the degree of ¢(2) is m > n+2. If Cy is a semicircular
contour z = Re?? . 0 < 0 <, and o > 0, then fCR f(z)e**dz — 0 as R — oo.

Example Evaluate the Cauchy principal value of fooo - 3‘2;‘“ dx.
Solution: First we rewrite the integral

*® rsinx 1 [ zsinz
dr = — —d 197
/0 219" 2/_Oox2+9x (197)
With o« = 1 we build
z .
“d 198
7€ 21977 (198)
with C' a semicircle in the upper complex plane. Using theorem 6.16
[ aogetet [ e = amiRes(r()e 30) (199)
e*dz edx = 2miRes(f(z)e"*, 3i
cn 22 +9 _rRT2+9 ’
where
Res(f(2)c",8i) = Res( e 3) = 2| = (200)
es(f(z)e**,31) = Res €, 3i) = —e = —
’ 22497 2z =3 2
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The integral in the contour C'r goes to zero, then

< x fe3 L
PV/oo 21 9° dx = 2mi (7) =i (201)
Then,
< x * xcosw [ zsinx i
/—oo$2+9e dx:/_oox2+9dx+z/_oox2+9dx:zg (202)
Equating real and imaginary parts we get
* xcosw
PV ——dx = 0 203
/_OO 249 v (203)
> xsinx s
PV dr = — 204
/_OO 219 e? (204)

Finally, in view of the fact that the integrand is an even function, we obtain the value of the

required integral,
Crsinz 1 [ zrsinz T
———dr = = ——dr = — 205
/0 219 2/00x2+9x 2e3 (205)

Indented Contours In the situation where f has poles on the real axis, we must use an
indented (mellado) contour as illustrated in Figure 4. The symbol C,. denotes a semicircular
contour centered at z = ¢ and oriented in the positive direction. The next theorem is important
to this discussion.

Figure 4: (From the book)

Theorem (6.19): Integral of functions with pole on the real axis Suppose f has a
simple pole z = ¢ on the real axis. If C, is the contour defined by z = c+7e? , 0 < § < 7, then

r—0

lim g f(z)dz = miRes(f(2),c) (206)

Proof: See pag. 359 in the book
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Figure 5: (From the book)

Example Evaluate the Cauchy principal value of ffooo %dm.
Solution: Let us consider the contour integral

eiz
d 207
iz(22—22+2) : (207)

The function f(z) = FER) has a pole at z = 0 and at z = 1 4 ¢ in the upper half-plane.

The contour C, shown in Figure 5, is indented at the origin, then

j{C:/CR+/Z+/CT+/TR:QWiRes(f(z)eiz,lei) (208)

By taking the limits R — oo and r — 0, it follows from Theorems 6.18 and 6.19 that

ezz

e8] eiz . N . N .
PV /Oo =2t 2)dzzc — miRes(f(z)e"*,0) = 2miRes(f(z)e"*, 1 +1)
where
; 1
Res(f(z)e*,0) = 3 (209)
. 6—1+i
Res(f(2)e 1+1) = ———(1+41) (210)
then
oo T(22 — 27+ 2) voT Mg mem 4 t

Using e 1" = e71(cos 1 +isin1) and equating real and imaginary parts, we get

e cos x 1.
PV /_OO Py P 2)d;1: = —e (sinl+cosl) (212)

o sin x
PV dr =
/_Oox(:c2—2x+2) .

[1+e !(sinl — cos1)] (213)

SIENSIE

Integration along a Branch Cut

Branch Point at z = 0 Here we examine integrals of the form [ f(x)dz, where the inte-
grand f(x) is algebraic but when it is converted to a complex function, the resulting integrand
f(2) has, in addition to poles, a nonisolated singularity at z = 0.
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Example: Integration along a Branch Cut Evaluate fo N +1)dx
Solution: The above real integral is improper for two reasons: (i) an infinite discontinuity at
x =0 and (ii) the infinite limit of integration. Moreover, it can be argued from the facts that
the integrand behaves like 7'/ near the origin and like 27%/? as @ — oo, that the integral
converges.

We form the integral

1
fg mdz (214)

where C'is the closed contour shown in Figure 6 consisting of four components. The integrand

Figure 6: (From the book)

f(2) of the contour integral is single valued and analytic on and within C, except for the simple
pole at 2 = —1 = €. Hence we can write

j{v#ﬂdz = 2miRes(f(z),—1) (215)
/C /ED / /AB = 2miRes(f(z),—1) (216)
R T (217)

with f(z) = ﬁ The segment AB coincides with the upper side of the positive real axis
for which 6 = 0, z = xe%; while, the segment ED coincides with the lower side of the positive

real axis for which 0 = 27?, z = xe(0+2“)’, then

T (ge2m)12
_ ‘ i 21
[ED /R e T (e”"dx) (218)

r :L,fl/2
= —/ +1d:€ (219)
R T
R .—1/2
= / Y 1daz (220)

R (gei)=1/2
= ~ (e”d 221
/AB / () (221)
R .—1/2
:/ dx (222)




Now with z = re? and z = Re® on C, and Cy , respectively, it can be shown that

/ -0 (223)
/C — 0 (224)

as r — 0 and R — oo, respectively. Then

oim [/CR+/ED+/T+/AJ = 2miRes(f(z), —1) (225)

2/0 mdw = 2miRes(f(z),—1) (226)

is the same as

with
—mif2 _

Res(f(z),—1) = 2_1/2’ =e

—i (227)

z=elm

* 1
/0 mdw =7 (228)

The Argument Principle and Rouché’s Theorem

then

Argument Principle Unlike the foregoing discussion in which the focus was on the eval-
uation of real integrals, we next apply residue theory to the location of zeros of an analytic
function.

Theorem (6.20): Argument Principle Let C' be a simple closed contour lying entirely

within a domain D. Suppose f is analytic in D except at a finite number of poles inside C,
and that f(z) # 0 on C. Then

L[ fG)
2mi Jo f(2)

where Nj is the total number of zeros of f inside C' and N, is the total number of poles of f
inside C. In determining Ny and N, , zeros and poles are counted according to their order or
multiplicities.

Proof: See pag. 363 in the book.

dz = Ny — N, (229)

Theorem (6.21): Rouché’s Theorem Let C' be a simple closed contour lying entirely
within a domain D. Suppose f and g are analytic in D. If the strict inequality |f(z) — g(2)| <
|f(2)| holds for all z on C|, then f and g have the same number of zeros (counted according to
their order or multiplicities) inside C'.
Proof: See pag. 365 in the book.

The Rouché’s Theorem is helpful in determining the number of zeros of an analytic function
(in a given region).
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