
Integración en el plano complejo

Credit: This notes are 100% from chapter 5 of the book entitled A First Course in Complex

Analysis with Applications by Dennis G. Zill and Patrick D. Shanahan. Jones and Bartlett
Publishers. 2003.

Real Integrals

Terminology Suppose a curve C in the plane is parametrized by a set of equations x = x(t),
y = y(t), a ≤ t ≤ b, where x(t) and y(t) are continuous real functions. Let the initial and
terminal points of C, that is, (x(a), y(a)) and (x(b), y(b)), be denoted by the symbols A and B,
respectively. We say that:
(i) C is a smooth curve if x′ and y′ are continuous on the closed interval [a, b] and not simul-
taneously zero on the open interval (a, b).
(ii) C is a piecewise smooth curve if it consists of a finite number of smooth curves
C1, C2, · · · , Cn joined end to end, that is, the terminal point of one curve Ck coinciding with
the initial point of the next curve Ck+1.
(iii) C is a simple curve if the curve C does not cross itself except possibly at t = a and t = b.
(iv) C is a closed curve if A = B.
(v) C is a simple closed curve if the curve C does not cross itself and A = B; that is, C is
simple and closed.

Method of Evaluation–C Defined Parametrically The line integrals can be evaluated in
two ways, depending on whether the curve C is defined by a pair of parametric equations or by
an explicit function. Either way, the basic idea is to convert a line integral to a definite integral

in a single variable. If C is smooth curve parametrized by x = x(t), y = y(t), a ≤ t ≤ b, then
replace x and y in the integral by the functions x(t) and y(t), and the appropriate differential
dx, dy, or ds by

dx = x′(t)dt (1)

dy = y′(t)dt (2)

ds =
√

[x′(t)]2 + [y′(t)]2dt (3)
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In this manner each of the line integrals becomes a definite integral in which the variable of
integration is the parameter t. That is,

∫

C

G(x, y)dx =

∫ b

a

G(x(t), y(t))x′(t)dt (4)

∫

C

G(x, y)dy =

∫ b

a

G(x(t), y(t))y′(t)dt (5)

∫

C

G(x, y)ds =

∫ b

a

G(x(t), y(t))
√

[x′(t)]2 + [y′(t)]2dt (6)

Method of Evaluation–C Defined by a Function If the path of integration C is the
graph of an explicit function y = f(x), a ≤ x ≤ b, then we can use x as a parameter. In this
situation, dy = f ′(x)dx, and the differential ds =

√

1 + [f ′(x)]2dx. Then,

∫

C

G(x, y)dx =

∫ b

a

G(x(t), f(x))dx (7)

∫

C

G(x, y)dy =

∫ b

a

G(x(t), f(x))f ′(x)dx (8)

∫

C

G(x, y)ds =

∫ b

a

G(x(t), f(x))
√

1 + [f ′(x)]2dx (9)

A line integral along a piecewise smooth curve C is defined as the sum of the integrals over
the various smooth curves whose union comprises C.

It is important to be aware that a line integral is independent of the parametrization of the
curve C, provided C is given the same orientation by all sets of parametric equations defining
the curve.

Complex Integrals

Curves Revisited Suppose the continuous real-valued functions x = x(t), y = y(t), a ≤ t ≤
b, are parametric equations of a curve C in the complex plane. If we use these equations as
the real and imaginary parts in z = x + iy, we can describe the points z on C by means of a
complex-valued function of a real variable t called a parametrization of C:

z(t) = x(t) + iy(t) (10)

with a ≤ t ≤ b. For example, the parametric equations x = cos t, y = sin t, 0 ≤ t ≤ 2π, describe
a unit circle centered at the origin. A parametrization of this circle is z(t) = cos t + i sin t, or
z(t) = eit, 0 ≤ t ≤ 2π.

The point z(a/b) = x(a/b)+iy(a/b) orA/B = (x(a/b), y(a/b)) is called the initial/terminal
point of C. z(t) = x(t) + iy(t) could also be interpreted as a two-dimensional vector function,
with z(a) and z(b) being as position vectors. As t varies from t = a to t = b we can envision
the curve C being traced out by the moving arrowhead of z(t).

Contours The notions of curves in the complex plane that are smooth, piecewise smooth,
simple, closed, and simple closed are easily formulated in terms of the vector function z(t) =
x(t) + iy(t). Suppose that its derivative is z′(t) = x′(t) + iy′(t). We say a curve C in the
complex plane is smooth if z′(t) is continuous and never zero in the interval a ≤ t ≤ b. The
vector z(t) is tangent to C at P . In other words, a smooth curve can have no sharp corners or
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cusps. A piecewise smooth curve C has a continuously turning tangent, except possibly at
the points where the component smooth curves C1, C2, · · · , Cn are joined together. A curve C
in the complex plane is said to be a simple if z(t1) 6= z(t2) for t1 6= t2 , except possibly for t = a
and t = b. C is a closed curve if z(a) = z(b). C is a simple closed curve if z(t1) 6= z(t2) for
t1 6= t2 and z(a) = z(b). In complex analysis, a piecewise smooth curve C is called a contour
or path.

We define the positive direction/orientation on a contour C to be the direction on the
curve corresponding to increasing values of the parameter t. In the case of a simple closed curve
C, the positive direction roughly corresponds to the counterclockwise direction. The negative
direction is the direction opposite the positive direction.

Complex or Contour Integral An integral of a function f of a complex variable z that is
defined on a contour C is denoted by

∫

C
f(z)dz and is called a complex or contour integral,

∫

C

f(z)dz = lim
||P ||→0

n
∑

k=1

f(z∗k)∆zk (11)

If the limit exists, then f is said to be integrable on C. The limit exists whenever if f is
continuous at all points on C and C is either smooth or piecewise smooth. Consequently we
shall, hereafter, assume these conditions as a matter of course. Moreover, we will use the
notation

∫

C
f(z)dz to represent a complex integral around a positively oriented closed curve.

By writing f = u+ iv and ∆z = ∆x+ i∆y we can write, in a short hand notation

∫

C

f(z)dz = lim
∑

(u+ iv)(∆x+ i∆y) (12)

= lim
[

∑

(u∆x− v∆y) + i
∑

(v∆x+ u∆y)
]

(13)

The interpretation of the last line is

∫

C

f(z)dz =

∫

C

udx− vdy + i

∫

C

vdx+ udy (14)

If x = x(t), y = y(t), a ≤ t ≤ b are parametric equations of C, then dx = x′(t)dt,
dy = y′(t)dt, then

∫

C

udx− vdy + i

∫

C

vdx+ udy =

∫ b

a

[u(x(t), y(t)) x′(t)− v(x(t), y(t)) y′(t)]dt

+i

∫ b

a

[v(x(t), y(t)) x′(t) + u(x(t), y(t)) y′(t)]dt (15)

If we use the complex-valued function z(t) = x(t) + iy(t) to describe the contour C, then Eq.

(15) is the same as
∫ b

a
f(z(t)) z′(t)dt when the integrand

f(z(t)) z′(t) = [u(x(t), y(t)) + iv(x(t), y(t))][x′(t) + iy′(t)] (16)

is multiplied out and
∫ b

a
f(z(t)) z′(t)dt is expressed in terms of its real and imaginary parts.

Thus we arrive at a practical means of evaluating a contour integral.
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Evaluation of a Contour Integral If f is continuous on a smooth curve C given by the
parametrization z(t) = x(t) + iy(t), a ≤ t ≤ b, then

∫

C

f(z)dz =

∫ b

a

f(z(t)) z′(t) dt (17)

Example Evaluate the contour integral
∫

C
z̄dz, where C is given by x = 3t, y = t2 , −1 ≤

t ≤ 4.
Solution:
z(t) = 3t+ it2, z′(t) = 3 + i2t and f(z(t)) = 3t− it2, then

∫

C

f(z)dz =

∫ b

a

f(z(t))z′(t)dt (18)

∫

C

z̄dz =

∫ b

a

(3t− it2)(3 + i2t)dt = 195 + i65 (19)

Example For some curves the real variable x itself can be used as the parameter. For example,
to evaluate

∫

C
(8x2− iy)dz on the line segment y = 5x, 0 ≤ x ≤ 2, we write z = x+ iy = x+5xi

(i.e. y = 5x), dz = (1 + 5i)dx, then

∫

C

(8x2 − iy)dz =

∫ 2

0

(8x2 − i5x)(1 + 5i)dx =
214

3
+ i

290

3
(20)

Properties(Theorem 5.2) Suppose the functions f and g are continuous in a domain D,
and C is a smooth curve lying entirely in D. Then

(i)
∫

C
kf(z)dz = k

∫

C
f(z)dz, k a complex constant.

(ii)
∫

C
[f(z) + g(z)]dz =

∫

C
f(z)dz +

∫

C
g(z)dz.

(iii)
∫

C
f(z)dz =

∫

C1

f(z)dz +
∫

C2

f(z)dz, where C consists of the smooth curves C1 and C2

joined end to end.

(iv)
∫

−C
f(z)dz = −

∫

C
f(z)dz, where −C denotes the curve having the opposite orientation of

C.

All these four properties hold if C is a piecewise smooth curve in D.

Theorem (5.3): A Bounding Theorem or ML-inequality If f is continuous on a smooth
curve C and if |f(z)| ≤ M for all z on C, then

|
∫

C

f(z)dz| ≤ ML (21)

where L is the length of C , i.e. L =
∫ b

a

√

[x′(t)]2 + [y′(t)]2dt =
∫ b

a
|z′(t)|dt, where z′(t) =

x′(t) + iy′(t).
It follows that since f is continuous on the contour C, the bound M for the values f(z) in

Theorem 5.3 will always exist.
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Example Find an upper bound for the absolute value of
∮

C
ez(z + 1)−1dz where C is the

circle |z| = 4.
Solution:
The length L of the circle is 8π. Next, for all points z on the circle |z + 1| ≥ |z| − 1 = 3. Thus

∣

∣

∣

∣

ez

z + 1

∣

∣

∣

∣

≤ |ez|
|z| − 1

=
ex

3
≤ e4

3
(22)

where we used that on the circle |z| = 4 ⇒ max x = 4, then

∣

∣

∣

∣

∫

C

f(z)dz

∣

∣

∣

∣

≤ ML =
8πe4

3
(23)

Cauchy-Goursat Theorem

In this section we shall concentrate on contour integrals, where the contour C is a simple closed
curve with a positive (counterclockwise) orientation. Specifically, we shall see that when f is
analytic in a special kind of domain D, the value of the contour integral

∮

C
f(z)dz is the same

for any simple closed curve C that lies entirely within D.

Simply and Multiply Connected Domains. A domain is an open connected set in the
complex plane. We say that a domain D is simply connected if every simple closed contour C
lying entirely in D can be shrunk(encogido) to a point without leaving D. A simply connected
domain has no “holes” in it. The entire complex plane is an example of a simply connected
domain; the annulus defined by 1 < |z| < 2 is not simply connected. A domain that is not
simply connected is called a multiply connected domain; that is, a multiply connected
domain has “holes” in it.

In 1825 the French mathematician Louis-Augustin Cauchy proved one of the most important
theorems in complex analysis:

Cauchy’s Theorem Suppose that a function f is analytic in a simply connected domain D
and that f is continuous in D. Then for every simple closed contour C in D,

∮

C

f(z)dz = 0 (24)

Proof: See pag. 257 in the book.
In 1883 the French mathematician Edouard Goursat proved that the assumption of conti-

nuity of f is not necessary to reach the conclusion of Cauchy’s theorem. The resulting modified
version of Cauchy’s theorem is known today as the Cauchy-Goursat theorem:

Theorem (5.4): Cauchy-Goursat Theorem Suppose that a function f is analytic in a
simply connected domain D. Then for every simple closed contour C in D,

∮

C

f(z)dz = 0 (25)

Proof: See Appendix II in the book.
Since the interior of a simple closed contour is a simply connected domain, the Cauchy-

Goursat theorem can be stated in the slightly more practical manner:
If f is analytic at all points within and on a simple closed contour C, then

∮

C
f(z)dz = 0.
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Example Using an arbitrary shaped contour C in the first quadrant calculates
∮

C
ezdz.

Solution: The function f(z) = ez is entire and consequently is analytic at all points within and
on the simple closed contour C. It follows that

∮

C
ezdz = 0. The point in this example is that

∮

C
ezdz = 0 for any simple closed contour in the complex plane. Indeed, it follows that for any

simple closed contour C and any entire function f that the integral is nil, for example

∮

C

sin zdz = 0 (26)
∮

C

cos zdz = 0 (27)

∮

C

n
∑

k=0

akz
kdz = 0 (28)

and so on.

Example Evaluate
∮

C
dz
z2
, where the contour C is the ellipse (x− 2)2 + 1

4
(y − 5)2 = 1.

Solution: The rational function f(z) = 1/z2 is analytic everywhere except at z = 0. But z = 0
is not a point interior to or on the simple closed elliptical contour C. Thus,

∮

C
dz
z2

= 0.

Principle of deformation of contours If f is analytic in a multiply connected domain
D then we cannot conclude that

∮

C
f(z)dz = 0 for every simple closed contour C in D. To

begin, suppose that D is a doubly connected domain (i.e. a domain with a single “hole“) and
C and C1 are simple closed contours such that C1 surrounds the “hole” in the domain and is
interior to C (see Fig. 1(a)). Suppose, also, that f is analytic on each contour and at each
point interior to C but exterior to C1. By introducing the crosscut AB shown in Figure 1(b),
the region bounded between the curves is now simply connected. From (iv) of Theorem 5.2,
the integral from A to B has the opposite value of the integral from B to A, then

0 =

∮

C

f(z)dz +

∫

AB

f(z)dz +

∫

−AB

f(z)dz +

∮

C1

f(z)dz

(aqúı C se recorre en sentido antihorario y C1 en sentido horario)
luego

∮

C

f(z)dz =

∮

C1

f(z)dz (29)

(aqúı ambos, C y C1, se recorren en sentido antihorario)
This result is sometimes called the principle of deformation of contours since we can think
of the contour C1 as a continuous deformation of the contour C. Under this deformation of
contours, the value of the integral does not change. Then, whe can evaluate an integral over a
complicated simple closed contour C by replacing it with a contour C1 that is more convenient.

The next theorem summarizes the general result for a multiply connected domain with n
“holes.”

Theorem (5.5): Cauchy-Goursat Theorem for Multiply Connected Domains Sup-
pose C,C1, · · · , Cn are simple closed curves with a positive orientation such that C1, C2, · · · , Cn

are interior to C but the regions interior to each Ck , k = 1, 2, · · · , n, have no points in common.
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Figure 1: Doubly connected domain D (from the book)

If f is analytic on each contour and at each point interior to C but exterior to all the Ck ,
k = 1, 2, · · · , n, then

∮

C

f(z)dz =

n
∑

k=1

∮

Ck

f(z)dz (30)

Example Evaluate
∮

C
dz
z−i

, where C is a complicated contour which contains z = i.
Solution: we choose the more convenient circular contour C1 centered at z0 = i and radius
r = 1, i.e. |z − i| = 1. It can be parametrized by z = i+ eit, 0 ≤ t ≤ 2π. Then

∮

C

dz

z − i
=

∮

C1

dz

z − i
=

∫ 2π

0

dz

eit
=

∫ 2π

0

ieitdt

eit

= 2πi (31)

This result can be generalized: if z0 is any constant complex number interior to any simple
closed contour C, then for n an integer we have

∮

C

dz

(z − z0)n
=

{

2πi n = 1
0 n 6= 1

(32)

The fact that this integral is zero when n 6= 1 follows only partially from the Cauchy-Goursat
theorem. When n is zero or a negative integer, then 1/(z − z0)

n is a polynomial and therefore
entire. Theorem 5.4 then indicates that the integral is zero.

Analyticity of the function f at all points within and on a simple closed contour C is
sufficient to guarantee that

∮

C
f(z)dz = 0. However, the previous example emphasizes that

analyticity is not necessary.

Example Evaluate
∮

C
5z+7

z2+2z−3
dz, where C is the circle |z − 2| = 2.

Solution: The roots of the denominators are 1 and −3. The integrand fails at these roots. Of
these two points, only z = 1 lies within the contour C. Separating the roots by partial fraction

5z + 7

z2 + 2z − 3
=

3

z − 1
+

2

z + 3
(33)

we have
∮

C

5z + 7

z2 + 2z − 3
dz =

∮

C

3

z − 1
dz +

∮

C

2

z + 3
dz (34)
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from the above calculation, the first integral gives 2πi, whereas the second gives 0 by the
Cauchy-Goursat theorem. Then

∮

C

5z + 7

z2 + 2z − 3
dz = 3(2πi) + 2(0) = 6πi (35)

Example Evaluate
∮

C
dz

z2+1
, where C is the circle |z| = 4.

Solution: In this case the denominator of the integrand factors as z2 + 1 = (z − i)(z + i).
Consequently, the integrand 1/(z2 + 1) is not analytic at z = ±i. Both of these points lie
within the contour C. Using partial fraction decomposition once more, we have

∮

C

dz

z2 + 1
=

∮

C

dz

2i(z − i)
−
∮

C

dz

2i(z + i)
=

1

2i

∮

C

[

1

z − i
− 1

z + i

]

dz

Next we surround the points z = i and z = −i by circular contours C1 and C2 , respectively,
that lie entirely within C. Specifically, the choice |z − i| = 1/2 for C1 and |z + i| = 1/2 for C2

will suffice. Then
∮

C

dz

z2 + 1
=

1

2i

∮

C1

[

1

z − i
− 1

z + i

]

dz +
1

2i

∮

C2

[

1

z − i
− 1

z + i

]

dz

=
1

2i
[2πi− 0] +

1

2i
[0− 2πi] = 0 (36)

Remark Throughout the foregoing discussion we assumed that C was a simple closed contour.
It can be shown that the Cauchy-Goursat theorem is valid for any closed contour C in a simply
connected domain D.

There exist integrals
∫

C
Pdx + Qdy whose value depends only on the initial point A and

terminal point B of the curve C, and not on C itself. In this case we say that the line integral
is independent of the path.

Independence of the Path Let z0 and z1 be points in a domain D. A contour integral
∫

C
f(z)dz is said to be independent of the path if its value is the same for all contours C in D

with initial point z0 and terminal point z1.

Theorem (5.6): Analyticity Implies Path Independence. Suppose that a function f
is analytic in a simply connected domain D and C is any contour in D. Then

∫

C
f(z)dz is

independent of the path C.
Suppose, as shown in Figure 2 that C and C1 are two contours lying entirely in a simply

connected domain D and both with initial point z0 and terminal point z1. If f is analytic in
D, it follows from the Cauchy-Goursat theorem that

[h!]

∫

C

f(z)dz +

∫

−C1

f(z)dz = 0 (37)

∫

C

f(z)dz =

∫

C1

f(z)dz (38)

A contour integral
∫

C
f(z)dz that is independent of the path C is usually written

∫ z1
z0

f(z)dz,
where z0 and z1 are the initial and terminal points of C.
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Figure 2: If f is analytic in D, integrals on C and C1 are equal (from the book).

Example Evaluate
∫

C
2zdz, where C is the contour shown in color in Figure 3.

Solution: Since the function f(z) = 2z is entire, we can, in view of Theorem 5.6, replace the
piecewise smooth path C by any convenient contour C1 joining z0 = −1 and z1 = −1+ i. Using
the black contour in Fig. 3, then z = −1 + iy, dz = idy, 0 ≤ y ≤ 1. Therefore,

∫

C

2zdz =

∫

C1

2zdz =

∫ 1

0

2(−1 + iy)(idy)

= −2i

∫ 1

0

dy − 2

∫ 1

0

ydy = [−2i]− 2[
1

2
] = −1− 2i

Figure 3: Alternative contour for the integral
∫

C
2zdz (from the book).

Antiderivative Suppose that a function f is continuous on a domain D. If there exists a
function F such that F ′(z) = f(z) for each z in D, then F is called an antiderivative of f . For
example, the function F (z) = − cos z is an antiderivative of f(z) = sin z.
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Indefinite integral The most general antiderivative, or indefinite integral, of a function f(z)
is written

∫

f(z)dz = F (z) + C, where F ′(z) = f(z) and C is some complex constant. For
example,

∫

sin zdz = − cos z + C.
Since an antiderivative F of a function f has a derivative at each point in a domain D, it

is necessarily analytic and hence continuous at each point in D.

Theorem (5.7): Fundamental Theorem for Contour Integrals Suppose that a function
f is continuous on a domain D and F is an antiderivative of f in D. Then for any contour C
in D with initial point z0 and terminal point z1,

∫

C

f(z)dz = F (z1)− F (z0) (39)

Example Calculate the integral
∫

C
2zdz with the same contour as in the previous example.

Solution: Now since the f(z) = 2z is an entire function, it is continuous. Moreover, F (z) = z2

is an antiderivative of f .
∫ −1+i

−1

2zdz = z2
∣

∣

−1+i

−1
= −1− 2i (40)

Example Evaluate
∫

C
cos zdz, where C is any contour with initial point z0 = 0 and terminal

point z1 = 2 + i.
Solution: F (z) = sin z is an antiderivative of f(z) = cos z since F ′(z) = cos z = f(z). Therefore,

∫

C

cos zdz =

∫ 2+i

0

cos zdz = sin z|2+i
0 = sin(2 + i) ≈ 1.4031− i0.4891 (41)

Some Conclusions We can draw several immediate conclusions from Theorem 5.7.
(i) If the contour C is closed, then z0 = z1 and, consequently,

∫

C
f(z)dz = 0.

(ii) Since the value of
∫

C
f(z)dz depends only on the points z0 and z1 , this value is the same for

any contour C in D connecting these points, i.e. if a continuous function f has an antiderivative
F in D, then

∫

C
f(z)dz is independent of the path.

(iii) If f is continuous and
∫

C
f(z)dz is independent of the path C in a domain D, then f has

an antiderivative everywhere in D.
If f is an analytic function in a simply connected domain D, it is necessarily continuous

throughout D. This fact, when put together with the results in Theorem 5.6 (iii), leads to a
theorem which states that an analytic function possesses an analytic antiderivative.

Theorem (5.8): Existence of an Antiderivative Suppose that a function f is analytic
in a simply connected domain D. Then f has an antiderivative in D; that is, there exists a
function F such that F ′(z) = f(z) for all z in D.

About the antiderivate of 1/z We saw for |z| > 0, −π < arg(z) < π, that 1/z is the
derivative of Lnz. This means that under some circumstances Lnz is an antiderivative of 1/z.
But care must be exercised in using this result. For example, suppose D is the entire complex
plane without the origin. The function 1/z is analytic in this multiply connected domain. If C
is any simple closed contour containing the origin, it does not follow that

∮

C
dz/z = 0. In fact,

from the result for
∮

c
dz/(z − z0)

n for n = 1 and z0 = 0, we have
∮

C
dz/z = 2πi. In this case,

Lnz is not an antiderivative of 1/z in D since Lnz is not analytic in D. Recall, Lnz fails to be
analytic on the nonpositive real axis.
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Example Evaluate
∫

C
1/zdz, where C is a contour in the first quadrant starting at z0 = 3

and ending at z = 2i.
Solution: Suppose that D is the simply connected domain defined by x > 0, y > 0, i.e. D is
the first quadrant in the z-plane. In this case, Lnz is an antiderivative of 1/z since both these
functions are analytic in D. Hence,

∫ 2i

3

1

z
dz = Lnz|2i3 = Ln2i− Ln3 (42)

= (ln 2 + i
π

2
) + (ln 3) ≈ −0.4055 + i1.5708 (43)

Example Evaluate
∫

C
1/z1/2dz, where C is the line segment between z0 = i and z1 = 9.

Solution: Throughout we take f1(z) = z1/2 to be the principal branch of the square root
function. In the domain |z| > 0, −π < arg(z) < π, the function f1(z) = 1/z1/2 = z−1/2 is
analytic and possesses the antiderivative F (z) = 2z1/2. Hence,

∫ 9

i

1

z1/2
dz = 2z1/2

∣

∣

9

i
= 2

[

3−
(√

2

2
+ i

√
2

2

)]

= (6−
√
2)− i

√
2 (44)

Remarks .
(i) Integration by parts: Suppose f and g are analytic in a simply connected domain D. Then,

∫

f(z)g′(z)dz = f(z)g(z)−
∫

g(z)f ′(z)dz (45)

(ii) In addition, if z0 and z1 are the initial and terminal points of a contour C lying entirely in
D, then

∫ z1

z0

f(z)g′(z)dz = f(z)g(z)|z1z0 −
∫ z1

z0

g(z)f ′(z)dz (46)

(iii) In complex analysis there is no complex counterpart to the mean-value theorem
∫ b

a
f(x)dx =

f(c)(b−a) of real analysis, valid if f is continuous on the closed interval [a, b], and c is a number
in the open interval (a, b).

Cauchy’s Integral Formulas and their Consequences

The most significant consequence of the Cauchy-Goursat theorem is the following result: the

value of an analytic function f at any point z0 in a simply connected domain can be represented

by a contour integral.

After establishing this proposition we shall use it to further show that: an analytic function

f in a simply connected domain possesses derivatives of all orders.

Cauchy’s Two Integral Formulas

If f is analytic in a simply connected domain D and z0 is any point in D, the quotient f(z)/(z−
z0) is not defined at z0 and hence is not analytic in D. Therefore, we cannot conclude that
the integral of f(z)/(z − z0) around a simple closed contour C that contains z0 is zero by the
Cauchy-Goursat theorem. Indeed, as we shall now see, the integral of f(z)/(z − z0) around C
has the value 2πif(z0). The first of two remarkable formulas is known simply as the Cauchy
integral formula.

11



Theorem (5.9): Cauchy’s Integral Formula Suppose that f is analytic in a simply
connected domain D and C is any simple closed contour lying entirely within D. Then for any
point z0 within C,

f(z0) =
1

2πi

∮

C

f(z)

z − z0
dz (47)

Proof: See pag. 273 in the book.
Because the symbol z represents a point on the contour C, the integral f(z0) =

1
2πi

∮

C
f(z)/(z−

z0)dz indicates that the values of an analytic function f at points z0 inside a simple closed con-
tour C are determined by the values of f on the contour C.

Cauchy’s integral formula can be used to evaluate contour integrals. Since we often work
problems without a simply connected domain explicitly defined, a more practical restatement
of Theorem 5.9 is:
If f is analytic at all points within and on a single contour C, and z0 is any point interior to

C, then f(z0) =
1

2πi

∮

C
f(z)/(z − z0)dz.

Example Evaluate
∮

C
(z2 − 4z + 4)/(z + i)dz, where C is the circle |z| = 2.

Solution: First, we identify f(z) = z2 − 4z + 4 and z0 = −i as a point within the circle C.
Next, we observe that f is analytic at all points within and on the contour C. Thus, by the
Cauchy integral formula we obtain

∮

C

z2 − 4z + 4

z + i
dz = 2πif(−i) = π(−8 + i6) (48)

Example Evaluate
∮

C
z/(z2 + 9)dz, where C is the circle |z − 2i| = 4.

Solution: The roots of denominator are 3i and −3i. We see that 3i is the only point within the
closed contour C at which the integrand fails to be analytic. Then,

∮

C

z

z2 + 9
dz =

∮

C

z

(z − 3i)(z + 3i)
dz =

∮

C

f(z)

z − 3i
dz (49)

with f(z) = z/(z + 3i), then

∮

C

z

z2 + 9
dz = 2πif(3i) = iπ (50)

We shall now build on Theorem 5.9 by using it to prove that the values of the derivatives
f (n)(z0), n = 1, 2, 3, · · · of an analytic function are also given by an integral formula. This
second integral formula is known by the name Cauchy’s integral formula for derivatives.

Theorem (5.10): Cauchy’s Integral Formula for Derivatives Suppose that f is analytic
in a simply connected domain D and C is any simple closed contour lying entirely within D.
Then for any point z0 within C,

f (n)(z0) =
n!

2πi

∮

C

f(z)

(z − z0)n+1
dz (51)

Proof: The demostration for n = 1 is given in pag. 275 of the book.
The Cauchy’s integral formula for derivatives can be used to evaluate integrals.
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Example Evaluate
∮

C
(z + 1)/(z4 + 2iz3)dz, where C is the circle |z| = 1.

Solution: The integrand is not analytic at z = 0 and z = −2i, but only z = 0 lies within the
closed contour. By writing the integral as

∮

C

z + 1

z4 + 2iz3
dz =

∮

C

z + 1

(z + 2i)(z − 0)3
dz (52)

we can identify, z0 = 0, n = 2, and f(z) = (z + 1)/(z + 2i). Then, f ′′(z) = (2 − 4i)/(z + 2i)3

and f ′′(0) = (2i− 1)/4i,
∮

C

z + 1

z4 + 2iz3
dz =

2πi

2!
f ′′(0) = −π

4
+ i

π

2
(53)

Example Evaluate
∫

C
(z3 + 3)/(z(z − i)2)dz, where C is shown in Fig. 4.

Solution: Although C is not a simple closed contour, we can think of it as the union of two

Figure 4: (from the book)

simple closed contours C1 and C2. Hence, we write
∫

C

z3 + 3

z(z − i)2
dz =

∫

C1

z3 + 3

z(z − i)2
dz +

∫

C2

z3 + 3

z(z − i)2
dz (54)

= −
∮

−C1

z3 + 3

z(z − i)2
dz +

∮

C2

z3 + 3

z(z − i)2
dz (55)

= −
∮

−C1

f(z)

z
dz +

∮

C2

g(z)

(z − i)2
dz (56)

= −[2πif(0)] +
2πi

1!
g′(i) (57)

with

f(z) =
z3 + 3

(z − i)2
(58)

g(z) =
z3 + 3

z
(59)

g′(z) =
2z3 − 3

z2
(60)
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and f(0) = −3, g′(i) = 3 + 2i, then
∫

C

z3 + 3

z(z − i)2
dz = −6πi+ (−4π + 6πi) = −4π + i 12π (61)

Some Consequences of the Integral Formulas

Theorem (5.11): Derivative of an Analytic Function is Analytic Suppose that f is
analytic in a simply connected domain D. Then f possesses derivatives of all orders at every
point z in D. The derivatives f ′, f ′′, f ′′′, · · · are analytic functions in D.

If a function f(z) = u(x, y) + iv(x, y) is analytic in a simply connected domain D, from

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=

∂v

∂y
− i

∂u

∂y
(62)

f ′′(z) =
∂2u

∂x2
+ i

∂2v

∂x2
=

∂2v

∂y∂x
− i

∂2u

∂y∂x
(63)

=
... (64)

we can also conclude that the real functions u and v have continuous partial derivatives of all
orders at a point of analyticity.

Theorem (5.12): Cauchy’s Inequality Suppose that f is analytic in a simply connected
domain D and C is a circle defined by |z − z0| = r that lies entirely in D. If |f(z)| ≤ M for all
points z on C, then

|f (n)(z0)| ≤
n!M

rn
(65)

Proof: Pag. 278 in the book

Theorem 5.12 is then used to prove the next theorem. The gist(esencia) of the theorem is
that an entire function f , one that is analytic for all z, cannot be bounded unless f itself is a
constant.

Theorem (5.13): Liouville’s Theorem The only bounded entire functions are constants.
Proof: See pag. 279 of the book.

Theorem (5.14): Fundamental Theorem of Algebra If p(z) is a nonconstant polyno-
mial, then the equation p(z) = 0 has at least one root.
Proof: See pag. 279 of the book.

If p(z) is a nonconstant polynomial of degree n, then p(z) = 0 has exactly n roots (counting
multiple roots). See Problem 29 in Exercises 5.5 of the book.

Morera’s Theorem gives a sufficient condition for analyticity. It is often taken to be the
converse of the Cauchy-Goursat theorem.

Theorem (5.15): Morera’s Theorem If f is continuous in a simply connected domain D
and if

∮

C
f(z)dz = 0 for every closed contour C in D, then f is analytic in D.

Proof: See pag. 280 of the book.

The next theorem tells us that |f(z)| assumes its maximum value at some point z on the
boundary C.
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Theorem (5.16): Maximum Modulus Theorem Suppose that f is analytic and non-
constant on a closed region R bounded by a simple closed curve C. Then the modulus |f(z)|
attains its maximum on C.

If the stipulation that f(z) 6= 0 for all z in R is added to the hypotheses of Theorem 5.16,
then the modulus |f(z)| also attains its minimum on C.

Example Find the maximum modulus of f(z) = 2z+5i on the closed circular region defined
by |z| ≤ 2.
Solution: |z| = zz̄, then for z → 2z + i5 we get |f(z)| = 4|z2| + 20ℑ(z) + 25. Because f is a
polynomial, it is analytic on the region defined by |z| ≤ 2. By Theorem 5.16, max|z|≤2|2z + 5i|
occurs on the boundary |z| = 2. Therefore, on |z| = 2, |2z + 5i| =

√

41 + 20ℑ(z). This
expression attains its maximum when Im(z) attains its maximum on |z| = 2, namely, at the
point z = 2i. Thus, max|z|≤2|2z + 5i| =

√
81 = 9.

In this example, f(z) = 0 only at z = −i5/2 and that this point is outside the region defined
by |z| ≤ 2. Hence we can conclude that |2z + 5i| attains its minimum when Im(z) attains its
minimum on |z| = 2 at z = −2i. Then, min|z|≤2|2z + 5i| =

√
1 = 1.
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