
Distancia yAproximación

Credit: This notes are 100% from chapter 7 of the book entitled Linear Algebra. A Modern

Introduction by David Poole. Thomson. Australia. 2006.

Introduction

By allowing ourselves to think of “distance” in a more flexible way, we will have the possibility
of having a “distance” between polynomials, functions, matrices, and many other objects that
arises in linear algebra.

Inner Product Spaces

Inner product: An inner product on a vector space V is an operation that assigns to every
pair of vectors ū and v̄ in V a real number 〈ū, v̄〉 such that the following properties hold for all
vectors ū and v̄, and w̄ in V and all scalars c:

1. 〈ū, v̄〉 = 〈v̄, ū〉

2. 〈ū, v̄ + w̄〉 = 〈ū, v̄〉+ 〈ū, w̄〉

3. 〈cū, v̄〉 = c〈ū, v̄〉

4. 〈ū, ū〉 ≥ 0 and 〈ū, ū〉 = 0 if and only if ū = 0

Inner product space: A vector space with an inner product is called an (real) inner product
space.

Example 7.1:

• Rn is an inner product space with 〈ū, v̄〉 = ū · v̄ = ūT v̄ =
∑n

i=1 uivi

• Rn is an inner product space with 〈ū, v̄〉 =
∑n

i=1 ωiuivi = ūTWv̄ where W = diag(ωi),
with ωi positive scalars. This is called weighted dot product.

• Let A be a symmetric, positive definite n × n matrix and ū and v̄ vectors in Rn, the
following defines an inner product: 〈ū, v̄〉 = ūTAv̄ (Example 7.3)

• In P2, let p(x) = a0+a1x+a2x
2 and q(x) = b0+b1x+b2x

2. The following product defines
an inner product on P2: 〈p(x), q(x)〉 = a0b0 + a1b1 + a2b2 (Example 7.4).

• Let f and g be in C[a, b], the vector space of all continuous functions on the closed interval

[a, b]. The following product defines an inner product on C[a, b]: 〈f, g〉 =
∫ b

a
f(x)g(x)dx

(Example 7.5).
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Exercise for the student in class (Example 7.2): Let ū =

[

u1

u2

]

and v̄ =

[

v1
v2

]

be two

vector in R2. Show that
〈ū, v̄〉 = 2u1v1 + 3u2v2 (1)

defines an inner product.

Properties of Inner Products

(Theorem 7.1) Let ū, v̄, and w̄ be vectors in an inner product space V and let c be a scalar,

a. 〈ū+ v̄, w̄〉 = 〈ū, w̄〉+ 〈v̄, w̄〉

b. 〈ū, cv̄〉 = c〈v̄, ū〉

c. 〈ū, 0̄〉 = 〈0̄, v̄〉 = 0

Proof: See book, pag. 544.

Length, Distance, and Orthogonality

Let ū and v̄ be vectors in an inner product space V ,

Length-norm: The length or norm of v̄ is ||v̄|| =
√

〈v̄, v̄〉.

Distance: The distance between ū and v̄ is d(ū, v̄)=||ū− v̄||.

Orthogonal: ū and v̄ are orthogonal if 〈ū, v̄〉 = 0.

Exercise for the student in class (Example 7.6): Let f and g be in C[0, 1], the vector
space of all continuous functions on the closed interval [0, 1] with the following inner product

〈f, g〉 =
∫ 1

0
f(x)g(x)dx, with f(x) = x and g(x) = 3x− 2. Calculates

1. ||f ||

2. d(f, g)

3. 〈f, g〉

Solution:

1. Let us first calculate

〈f, f〉 =
∫ 1

0

f 2(x)dx =
1

3
(2)

then ||f || =
√

〈f, f〉 = 1/
√
3.

2. Since d(f, g)=||f − g|| =
√

〈(f − g), (f − g)〉

〈(f − g), (f − g)〉 =
∫ 1

0

(f − g)2(x)dx =
4

3
(3)

then d(f, g)=2/
√
3.
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3. Let us calculate 〈f, g〉
〈f, g〉 =

∫ 1

0

f(x)g(x)dx = 0 (4)

Thus, f and g are orthogonal.

Pythagoras’ Theorem (Theorem 7.2): Let ū and v̄ be vectors in an inner product space
V . Then ū and v̄ are orthogonal if and only if

||ū+ v̄||2 = ||ū||2 + ||v̄||2 (5)

Proof: In exercise 32 of the book it is asked to prove

||ū+ v̄||2 = 〈ū+ v̄, ū+ v̄〉 = ||ū||2 + 2〈ū, v̄〉+ ||v̄||2 (6)

If follows immediately that ||ū+ v̄||2 = ||ū||2 + ||v̄||2 if and only if 〈ū, v̄〉 = 0.

Orthogonal Projections and the Gram-Schmidt Process

Orthogonal set: an orthogonal set of vectors in an inner product space V is a set {v̄1, · · · , v̄k}
of vectors from V such that 〈v̄i, v̄j〉 = 0, whenever v̄i 6= v̄j .

Orthonormal set: and orthonormal set of vectors is an orthogonal set of unit vectors.

Orthogonal basis: an orthogonal basis for a subspace W of V is just a basis for W that is
an orthogonal set.

Orthonormal basis: an orthonormal basis for a subspace W of V is a basis for W that is
an orthonormal set.

Remark: In Rn, the Gram-Schmidt Process(GSP) (Theorem 5.15 of the book) shows that
every subspace has an orthogonal basis. We can mimic the construction of the GSP to show
that every finite-dimensional subspace of an inner product space has an orthogonal basis–all
we need to do is replace the dot product by the more general inner product. See next example.

Construction of an orthogonal basis (Example 7.8): Construct an orthogonal basis for
P2 with respect to the inner product

〈f, g〉 =
∫ 1

−1

f(x)g(x)dx (7)

by applying the GSP to the basis {1, x, x2}. Solution:
Let x̄1 = 1, x̄2 = x, and x̄3 = x2. We begin by setting v̄1 = x̄1 = 1. Next we compute

〈v̄1, v̄1〉 =

∫ 1

−1

dx = 2 (8)

〈v̄1, x̄2〉 =

∫ 1

−1

xdx = 0 (9)

Then,

v̄2 = x̄2 −
〈v̄1, x̄2〉
〈v̄1, v̄1〉

v̄1 = x− 0

2
(1) = x (10)
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In order to find v̄3, we first compute

〈v̄1, x̄3〉 =

∫ 1

−1

x2dx =
2

3
(11)

〈v̄2, x̄3〉 =

∫ 1

−1

x3dx = 0 (12)

〈v̄2, v̄2〉 =

∫ 1

−1

x2dx =
2

3
(13)

(14)

then,

v̄3 = x̄3 −
〈v̄1, x̄3〉
〈v̄1, v̄1〉

v̄1 −
〈v̄2, x̄3〉
〈v̄2, v̄2〉

v̄2 (15)

= x2 − 2/3

2
(1)− 0

2/3
(16)

= x2 − 1

3
(17)

Then, {v̄1, v̄2, v̄3} is an orthogonal basis for P2 on the interval [−1, 1]. The polynomials

1, x, x2 − 1

3
(18)

are the first three Legendre polynomials.

Orthogonal projection projW (v̄): We can define orthogonal projection projW (v̄) of a vector
v̄ onto a subspace W of an inner product space. If {ū1, · · · , ūk} is an orthogonal basis for W ,
then

projW (v̄) =
〈ū1, v̄〉
〈ū1, ū1〉

ū1 + · · ·+ 〈ūk, v̄〉
〈ūk, ūk〉

ūk (19)

Orthogonal to W : The component of v̄ orthogonal to W is the vector

perpW (v̄) = v̄ − projW (v̄) (20)

Remark: projW (v̄) and perpW (v̄) are orthogonal.

The Cauchy-Schwarz and Triangle Inequalities

The Cauchy-Schwarz Inequality (Theorem 7.3): Let ū and v̄ be vectors in a inner
product space V . Then

|〈ū, v̄〉| ≤ ||ū|| ||v̄|| (21)

with equality holding if and only if ū and v̄ are scalar multiples of each other.
Proof: In ū = 0̄, the the inequality is actually an equality, since

|〈0̄, v̄〉| = 0 = ||0̄|| ||v̄|| (22)

If ū 6= 0̄, the let W be the subspace of V spanned by ū. Since

projW (v̄) =
〈ū, v̄〉
〈ū, ū〉 ū (23)
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and
perpW (v̄) = v̄ − projW (v̄) (24)

are orthogonal, we can apply Pythagoras’ Theorem to obtain

||v̄||2 = ||projW (v̄) + (v̄ − projW (v̄)||2 (25)

= ||projW (v̄) + perpW (v̄)||2 (26)

= ||projW (v̄)||2 + ||perpW (v̄)||2 (27)

It follows that
||projW (v̄)||2 ≤ ||v̄||2 (28)

Now

||projW (v̄)||2 =

〈 〈ū, v̄〉
〈ū, ū〉 ū,

〈ū, v̄〉
〈ū, ū〉 ū

〉

(29)

=

( 〈ū, v̄〉
〈ū, ū〉

)2

〈ū, ū〉 (30)

=
〈ū, v̄〉2
〈ū, ū〉 (31)

=
〈ū, v̄〉2
||ū||2 (32)

so we have
〈ū, v̄〉2
||ū||2 ≤ ||v̄||2 ⇒ 〈ū, v̄〉2 ≤ ||v̄||2||ū||2 ⇒ |〈ū, v̄〉| ≤ ||v̄||||ū|| (33)

Clearly |〈ū, v̄〉| ≤ ||v̄||||ū|| is an equality if and only if ||projW (v̄)||2 = ||v̄||2, and this is true
if and only if perpW (v̄) = 0, equivalently

v̄ = projW (v̄) =
〈ū, v̄〉
〈ū, ū〉 ū (34)

If this is so, then v̄ is a scalar multiple of ū. Consequently, if v̄ = cū, then

perpW (v̄) = v̄ − projW (v̄) (35)

= cū− 〈ū, cū〉
〈ū, ū〉 ū (36)

= cū− c
〈ū, ū〉
〈ū, ū〉 ū (37)

= 0 (38)

so equality holds in the Cauchy-Schwarz Inequality.

The Triangle Inequality (Theorem 7.4): Let ū and v̄ be vectors in an inner product space
V . Then

||ū+ v̄|| ≤ ||ū||+ ||v̄|| (39)

Proof: We start the demonstration with the following equality which is asked to proved in
Exercise 32 in the book

||ū+ v̄||2 = ||ū||2 + 2〈ū, v̄〉+ ||v̄||2 (40)

≤ ||ū||2 + 2|〈ū, v̄〉|+ ||v̄||2 (41)

≤ ||ū||2 + 2||ū||||v̄||+ ||v̄||2 (42)

≤ (||ū||+ ||v̄||)2 ⇒ ||ū+ v̄|| ≤ ||ū||+ ||v̄|| (43)
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Vectors and Matrices with Complex Entries

Complex dot product: If ū and v̄ are vector in Cn, then the complex dot product of ū and
v̄ is defined by

ū · v̄ = u∗1v1 + · · ·+ u∗nvn (44)

where u∗i is the complex conjugate of ui.

Norm: ||v̄|| =
√
v̄ · v̄

Distance: d(ū, v̄) = ||ū− v̄||

Properties:

a1. ū · v̄ = (v̄ · ū)∗

a2. ū · v̄ = ū+v̄ where ū+ is the conjugate transpose of ū.

b. ū · (v̄ + w̄) = ū · v̄ + ū · w̄

c. (cū) · v̄ = c∗(ū · v̄) and ū · (cv̄) = c(ū · v̄)

d. ū · ū ≥ 0 and ū · ū = 0 if and only if ū = 0

e. For matrices with complex entries, addition, multiplication by complex scalars, transpose,
and matrix multiplication are all defined exactly as we did for real matrices in Section
3.1 of the book, and the algebraic properties of these operations still hold (Section 3.2 of
the book).

f. The notion of inverse and determinant of a square complex matrix are likewise the real case,
and the techniques and properties all carry over the complex case (Sections 3.3. and 4.2
of the book).

However, the notion of transpose is not that useful in complex matrices. The following is
an alternative useful definition when working with complex matrices:

Conjugate Transpose: If A is a complex matrix, then the conjugate transpose of A is the
matrix A+ defined by

A+ = (AT )∗ (45)

Properties of complex conjugate matrices:

a. (A∗)∗ = A

b. (cA)∗ = c∗A∗

c. (A+B)∗ = A∗ +B∗

d. (AB)∗ = A∗B∗
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Properties of complex transpose matrices:

a. (A+)+ = A

b. (cA)+ = c∗A+

c. (A+B)+ = A+ +B+

d. (AB)+ = B+A+

The following definition is the complex generalization of real symmetric matrix.

Hermitian: A square complex matrix A is called Hermitian if A+ = A–that is, if it is equal
to its own conjugate transpose.

Properties of Hermitian matrices:

a. The diagonal entries of a Hermitian matrix are real

b. The eigenvalues of a Hermitian matrix are real numbers.

c. If A is Hermitian, then eigenvectors corresponding to distinct eigenvalues ofA are orthogonal.

If a square real matrix satisfies that Q−1 = QT then Q is orthogonal. The next definition
give the analogue for complex matrices.

Unitary: A square complex matrix U is called unitary if U−1 = U+

Remark: In order to show that U is unitary you need only to show that U+U = I.

The following statement are equivalent:

a. U is unitary

b. The columns of U form an orthonormal set in Cn with respect to the complex dot product.

c. The rows of U form an orthonormal set in Cn with respect to the complex dot product.

d. ||Ux̄|| = ||x̄|| for every x̄ in Cn.

e. Ux̄ · Uȳ = x̄ · ȳ for every x̄ and ȳ in Cn.

The following definition is the natural generalization of orthogonal diagonalizability to com-
plex matrices
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Unitary Diagonalizable: A square matrix A is called unitary diagonalizable if there exist
a unitary matrix U and a diagonal matrix D such that

U+AU = D (46)

where the columns of U must form an orthonormal basis in Cn consisting of eigenvectors of A.
The following is the process to find U and D,

1. Compute the eigenvalues of A

2. Find a basis for each eigenspace

3. Ensure that each eigenspace basis consists of orthonormal vectors (using the Gram-
Schmidt Process, with the complex dot product, if necessary)

4. Form the matrix U whose columns are the orthonormal eigenvectors just found.

5. As a consequence of this construction the product U+AU will be a diagonal matrix D
whose diagonal entries are the eigenvalues of A arranged in the order as the corresponding
eigenvectors in the columns of U .

Remarks:

• Every Hermitian matrix is unitary diagonalizable. This is the Complex Spectral Theorem.

• It turns that the inverse statement, i.e. every unitary diagonalizable matrix is Hermitian,
is not true.

The characterization of unitary diagonalizability is the following theorem (it is not demon-
strated in the book.

Unitarily Diagonalizable: A square complex matrix A is unitarily diagonalizable if and
only if

A+A = AA+ (47)

Normal matrix: A matrix A for which A+A = AA+ is called normal.

Skew(asimétrico)-Hermitian matrix: A matrix A for which A+ = −A is called skew-
Hermitian.

Remark:

• Every Hermitian matrix, every unitary matrix, and every skew-Hermitian matrix is nor-
mal. In the real case, this result refers to symmetric, orthogonal, and skew-asymmetric
matrices, respectively.

• If a square complex matrix is unitarily diagonalizable, then it is normal.

8



Geometric Inequalities and Optimization Problems

Recall that the Cauchy-Schwarz Inequality in Rn states that for all vectors ū and v̄,

|ū · v̄| ≤ ||ū|| ||v̄|| (48)

|
n
∑

i=1

xiyi| ≤

√

√

√

√

n
∑

i=1

x2
i

√

√

√

√

n
∑

i=1

y2i (49)

⇒
(

n
∑

i=1

xiyi

)2

≤





√

√

√

√

n
∑

i=1

x2
i





2



√

√

√

√

n
∑

i=1

y2i





2

(50)

Examples:

• √
xy ≤ x+y

2
where

√
xy is the geometric mean and (x + y)/2 is the arithmetic mean or

average.

• (
∏n

i=1 xi)
1

n ≤
∑

n

i=1
xi

n

Definitions:

Quadratic Means:

√∑
n

i=1
x2

i

n

Harmonic Mean: n∑
n

i=1

1

xi

Relation between the different means:
√

x2 + y2

2
≥ x+ y

2
≥ √

xy ≥ 2
1
x
+ 1

y

(51)

Norms and Distance Functions

Norm: A norm on a vector space V is a mapping that associates with each vector v̄ a real
number ||v̄||, called the norm of v̄, such that the following properties are satisfied for all vector
ū and v̄ and all scalars c:

1. ||v̄|| ≥ 0, and ||v̄|| = 0 if and only if v̄ = 0

2. ||cv̄|| = c||v̄||

3. ||ū+ v̄|| ≤ ||ū||+ ||v̄||

Normed linear space: A vector space with a norm is called a normed linear spaced

Example:

scalar norm: An inner product space with norm ||v̄|| =
√

〈v̄, v̄〉 defines a norm.

Sum norm or 1-norm: The sum norm ||v̄||s or ||v̄||1 of a vector v̄ in Rn is the sum of the
absolute values of its components. That is, if v̄ = [v1, · · · , vn]T , then ||v̄||s = |v1|+· · ·+|vn|
is a norm.
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Max norm or ∞ norm or uniform norm: The max norm ||v̄||m or ||v̄||∞ of a vector in
Rn is the largest number among the absolute values of its components. That is, if v̄ =
[v1, · · · , vn]T , then ||v̄||m = max{|v1|, · · · , |vn|} is a norm.

In general, it is possible to define a norm ||v̄||p of a vector in Rn by ||v̄||p = (|v1|p+· · ·+|vn|p)1/p
for any real p ≥ 1. For

• p = 1, ||v̄||1 = ||v̄||s.
• p = 2, ||v̄||2 =

√

|v1|2 + · · ·+ |vn|2. It is the familiar norm obtain from the dot
product. This 2-norm of Euclidean norm, is often denoted by ||v̄||E.

Distance Functions

For any norm, we can define a distance function:

d(ū, v̄) = ||ū− v̄|| (52)

Exercise for the student in class (Example 7.16): Compute the distance d(ū, v̄) relative
to

a. the Euclidean norm. You should get: 5.

b. the sum norm. You should get: 7.

c. the max norm. You should get: 4.

where ūT = [3,−2] and v̄T = [−1, 1].

Properties of the distance function(Theorem 7.5): Let d be a distance function defined
on a normed linear space V . The following properties hold for all vectors ū, v̄, and w̄ in V :

a. d(ū, v̄)≥ 0, d(ū, v̄)=0 if and only if ū = v̄

b. d(ū, v̄)=d(v̄, ū)

c. d(ū, w̄)≤d(ū, v̄)+d(v̄, w̄)

Proof: See book, pag. 564.

Matrix Norms

A matrix norm on Mnn is a mapping that associates with each n× n matrix A a real number
||A||, called the norm of A, such that the following properties are satisfied for all n×n matrices
A and B and all scalars c,

1. ||A|| ≥ 0 and ||A|| = 0 if and only if A = O.

2. ||cA|| = c||A||

3. ||A+B|| ≤ ||A||+ ||B||

4. ||AB|| ≤ ||A|| ||B||
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Compatible: A matrix norm on Mnn is said to be compatible with a vector norm ||x̄|| on Rn

if for all n× n matrices A and all vectors x̄ in Rn, we have

||Ax̄|| ≤ ||A|| ||x̄|| (53)

Examples:

Frobenius norm: (Example 7.18) The Frobenius norm ||A||F of a matrix A is obtained by
stringing(desfibrar) out the entries of the matrix and then taking the Euclidean norm,

||A||F =

√

√

√

√

n
∑

i,j=1

a2ij (54)

Operator norm: (Theorem 7.6) If ||x̄|| is a vector norm on Rn, then ||A|| = max||x̄||=1||Ax̄||
defines a norm on Mnn that is compatible with the vector norm that induces it. The
following are three examples:

Sum norm: ||A||1 = max||x̄||s=1||Ax̄||s
Euclidean norm: ||A||2 = max||x̄||E=1

||Ax̄||E
Max norm: ||A||∞ = max||x̄||m=1||Ax̄||m

Theorem 7.7: Let A be an n × n matrix with columns vectors āi and row vectors Āi for
i = 1, · · · , n,
a. ||A||1 = maxj=1,··· ,n||āj||s = maxj=1,··· ,n

∑n
i=1 |aij| (notar que se suman las columnas)

b. ||A||∞ = maxj=1,··· ,n||Āj||s = maxi=1,··· ,n

∑n
j=1 |aij| (notar que se suman las filas)

Example 7.19: Find ||A||1 and ||A||∞ using the Theorem 7.7 and the definition ||A|| =
max||x̄||=1||Ax̄|| for

A =





1 −3 2
4 −1 −2
−5 1 3



 (55)

• Using T. 7.7:

||A||1 = ||ā1||s = |1|+ |4|+ | − 5| = 10 (56)

||A||∞ = ||Ā4||s = | − 5|+ |1|+ |3| = 9 (57)

• using the definition ||A|| = max||x̄||=1||Ax̄||:
(i) For ||A||1 = max||x̄||s=1

||Ax̄||s we see that the maximum value of 10 is achieved when
we take x̄ = ē1, then

||Aē1||s = ||ā1||s = 10 = ||A||1 (58)

(ii) For ||A||∞ = max||x̄||m=1
||Ax̄||m, if we take x̄T = [−1 1 1] we obtain

||Ax̄||m =

∥

∥

∥

∥

∥

∥





1 −3 2
4 −1 −2
−5 1 3









−1
1
1





∥

∥

∥

∥

∥

∥

m

(59)

=

∥

∥

∥

∥

∥

∥





−2
−7
9





∥

∥

∥

∥

∥

∥

m

= max{| − 2|, | − 7|, |9|} (60)

||Ax̄||m = 9 (61)
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The Condition Number of a Matrix

Ill-Conditioned matrix: A matrix A is ill-conditioned if small changes in its entries can
produce large changes in the solutions to Ax̄ = b̄.

Well-Conditioned matrix: If small changes in the entries of a matrix A produce only small
changes in the solutions to Ax̄ = b̄, then A is called well-conditioned.

Ill-conditioned in terms of the norm: We can use matrix norms to give a more precise
way of determining when a matrix is ill-conditioned. The inequality (see book, pag. 571)

||∆x̄||
||x̄′|| ≤ cod(A)

||∆A||
||A|| (62)

gives an upper bound on how large the relative error in the solution can be in terms of the
relative error in the coefficient matrix. The larger the condition number cond(A) = ||A−1|| ||A||,
the more ill-conditioned the matrix, since there is more “room” for the error to be large relative
to the solution.

Remarks:

• The condition number
cond(A) = ||A−1|| ||A|| (63)

of a matrix depends on the choice of the norm. The most commonly used norms are the
operator norms ||A||1 and ||A||∞.

• For any norm, cond(A) ≥ 1.

• If the condition number is large relative to one compatible matrix norm, it will be large
relative to any compatible matrix norm.

The Convergence of Iterative Methods

One of the most important uses of matrix norms is to establish the convergence properties of
various iterative methods.

Least Squares Approximation

Best Approximation: If W is a subspace of a normed linear space V and if v̄ is a vector in
V , then the best approximation to v̄ in W is the vector ṽ in W such that

||v̄ − ṽ|| < ||v̄ − w̄|| (64)

for every vector w̄ in W different from ṽ.

Remark: In R2 or R3, we are used of thinking of “shorter distance” as corresponding to
“perpendicular distance”. In algebraic terminology, “shorter distance” relates to the notion of
orthogonal projection, i.e. if W is a subspace of Rn and v̄ is a vector in Rn, then we expect
projW (v̄) to be the vector in W that is closest to v̄, see Fig. 1.
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Figure 1: (from the book)

The Best Approximation Theorem (Theorem 7.8): If W is a finite-dimensional sub-
space of an inner product space V and if v̄ is a vector in V , then projW (v̄) is the best approx-
imation to v̄ in W .
Proof: Let w̄ be a vector in W different from projW (v̄). Then projw(v̄) − w̄ is also in W , so
v̄− projW (v̄) = perpW (v̄) is orthogonal to projW (v̄)− w̄, by Exercise 43 of the book of Section
7.1. Pythagoras’s Theorem now implies that

||v̄ − projW (v̄)||2 + ||projW (v̄)− w̄||2 = ||(v̄ − projW (v̄)) + (projw(v̄)− w̄)||2
= ||v̄ − w̄||2 (65)

as Fig. 1 illustrates. However, ||projW (v̄)− w̄||2 > 0, since w̄ 6= projW (v̄), so

||v̄ − projW (v̄)||2 < ||v̄ − projW (v̄)||2 + ||projW (v̄)− w̄)||2 = ||v̄ − w̄||2

⇒ ||v̄ − projW (v̄)|| < ||v̄ − w̄|| (66)

Remark: The Best Approximation Theorem gives us an alternative proof that projW (v̄) does
not depend on the choice of the basis of W , since there can be only one vector in W that is
closest to v̄–namely projW (v̄).

Example 7.23: Let

ū1 =





1
2
−1



 ū2 =





5
−2
1



 v̄ =





3
2
5



 (67)

Find the best approximation to v̄ in the planeW = span(ū1, ū2) and find the Euclidean distance
from v̄ to W .
Solution:
The vector in W which best approximate v̄ is projW (v̄),

projW (v̄) =

(

ū1 · v̄
ū1 · ū1

)

ū1 +

(

ū2 · v̄
ū2 · ū2

)

ū2 (68)

=
2

6





1
2
−1



+
16

30





5
−2
1



 =





3
−2/5
1/5



 (69)
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The distance from v̄ to W is the distance from v̄ to the point is W closest to v̄. But this
distance is just

||perpW (v̄)|| = ||v̄ − projw(v̄)|| (70)

then

perpW (v̄) = v̄ − projw(v̄) (71)

=





3
2
5



−





3
−2/5
1/5



 =





0
−12/5
24/5



 (72)

then distance from v̄ to W is

||perpW (v̄)|| =
√

02 + (−12/5)2 + (24/5)2 = 12
√
5/5 (73)

Least Squares Approximation

This section is about of finding a curve that “best fits” a set of data points.

Least Square Solution: If A is an m× n matrix and b̄ is in Rm, a least square solution of
Ax̄ = b̄ is a vector x̃ in Rn such that

||b̄− Ax̃|| ≤ ||b̄−Ax̄|| (74)

for all x̄ in Rn.

The Least Squares Theorem (Theorem 7.9): Let A be an m× n matrix and let b̄ be in
Rm. Then Ax̄ = b̄ always has at least one least squares solution x̃. Moreover,

a. x̃ is a least squares solution of Ax̄ = b̄ if and only if x̃ is a solution of the normal equations
ATAx̃ = AT b̄.

b. A has LI columns if and only if ATA is invertible. In this case, the least squares solution of
Ax̄ = b̄ is unique and is given by x̃ = (ATA)−1AT b̄.

Proof: See book, pag. 585.

Least Squares via the QR Factorization

If is often the case that the normal equations for a least squares problem are ill-conditioned.
Therefore, a small numerical error in performing Gaussian elimination will result in a late error
in the least square solution. The QR factorization of A yields a more reliable way of computing
the least square approximation of Ax̄ = b̄.

Theorem 7.10: Let A be an m× n matrix with LI columns and let b̄ be in Rm. If A = QR
is a QR factorization of A (where Q is an m × n matrix with orthonormal columns and R is
an invertible upper triangular matrix), then the unique least squares solution x̃ of Ax̄ = b̄ is
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R−1QT b̄.
Proof: Writing A = QR in ATAx̃ = AT b̄ we have

ATAx̃ = AT b̄ (75)

(QR)TQRx̃ = (QR)T b̄ (76)

RTQTQRx̃ = RTQT b̄ (77)

RTRx̃ = RTQT b̄ (78)

Rx̃ = QT b̄ (79)

x̃ = R−1QT b̄ (80)

(81)

where we used QTQ = I and the fact that RT is invertible because R is so.

Remark: Since R is upper triangular, in practice it is easier to solve Rx̃ = QT b̄.

Orthogonal Projection Revisited

The least squares method give an alternative formulation for the orthogonal projection of a
vector onto a subspace on Rm.

Theorem 7.11: Let W be a subspace of Rm and let A be an m × n matrix whose columns
form a basis for W . If v̄ is any vector in Rm, then the orthogonal projection of v̄ onto W is the
vector

projW (v̄) = A(ATA)−1AT v̄ (82)

The LT P : Rm → Rm that projects Rm onto W has A(ATA)−1AT as its standard matrix.
Proof: Given the way we have constructed A, its column space is W . Since the columns of
A are LI, the Least Squares Theorem guarantees that there is a unique least squares solution
Ax̄ = v̄ given by

x̃ = (ATA)−1AT v̄ (83)

By equation
Ax̃ = projcol(A)(b̄) (84)

and the above statement, we have
Ax̃ = projW (b̄) (85)

Therefore
projW (v̄) = A((ATA)−1AT v̄) = (A(ATA)−1AT )v̄ (86)

as required.

Remark: Since the projection of a vector onto a subspace W is unique, the standard matrix
of this LT (as given by Theorem 7.11) cannot depend on the choice of basis for W . That is,
with a different basis for W , we have a different matrix A, but the matrix A(ATA)−1AT will
be the same!!!.

The Pseudoinverse of a Matrix

If A is an n×n matrix with LI columns, then it is invertible, and the unique solution to Ax̄ = b̄
is x̄ = A−1b̄. If m > n and A is m × n with LI columns, then Ax̄ = b̄ has no exact solution,
but the best approximation is given by the unique leas squares solution x̃ = (ATA)−1AT b̄. The
matrix (ATA)−1AT therefore plays the role of an ”inverse of A“ in this situation.
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Seudoinverse: If A is a matrix with LI columns, then the pseudoinverse of A is the matrix
A+ defined by

A+ = (ATA)−1AT (87)

Remarks:

• If the matrix A is m× n, then the pseudoinverse A+ is n×m.

• If A is m × n matrix with LI columns, the least squares solution of Ax̄ = b̄ is given by
x̃ = A+b̄.

• The standard matrix of the orthogonal projection P from Rm onto col(A) is [P ] = AA+

• If A is square, then A+ = A−1. In this case,

– the least square solution of Ax̄ = b̄ is the exact solution: x̃ = A+b̄ = A−1b̄ = x̄.

– The projection matrix becomes [P ] = AA+ = AA−1 = I

Properties of the seudoinverse (Theorem 7.12): Let A be a matrix with LI columns.
Then the pseudoinverse A+ of A satisfies the following properties, called Penrose conditions for
A:

a. AA+A = A

b. A+AA+ = A+

c. AA+ and A+A are symmetric.

Proof: See book, pag. 595.

The Singular Value Decomposition

Remarks:

• We saw that every symmetric matrix A can be factored as A = PDP T , where P is an
orthogonal matrix and D is a diagonal matrix displaying the eigenvalues for A.

• If A is not symmetric, such a factorization is not possible, but we may still be able to
factor a square matrix A as A = PDP−1, where D is as before but P is now simply an
invertible matrix. (notar el cambio de P T a P−1 para el caso de matrices no simétricas.)

• However, not every matrix is diagonalizable, but every matrix (symmetric of not, square
or not) has a factorization of the form A = PDQT (called singular value decomposition),
where P and Q are orthogonal and D is a diagonal matrix.

The Singular Values of a Matrix

For any m × n matrix A, the n × n matrix ATA is symmetric and hence can be orthogonally
diagonalized, by the Spectral Theorem. Not only are the eigenvalue of ATA all real (Theorem
5.18 of the book), they are all nonnegative: let λ be an eigenvalue of ATA with corresponding
unit eigenvector v̄. Then

0 ≤ ||Av̄||2 = (Av̄) · (Av̄) = (Av̄)TAv̄ = v̄TATAv̄ (88)

= v̄Tλv̄ = λ(v̄ · v̄) = λ||v̄||2 = λ (89)

It therefore makes sense to take (positive) square roots of these eigenvalues.
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Singular Values: If A is an m×n matrix, the singular values of A are the square roots of the
eigenvalues of ATA and are denoted by σ1, · · · , σn. It is conventional to arrange the singular
values so that σ1 ≥ · · · ≥ σn.

Remark: Consider the eigenvectors of ATA for the matrix A of m × n. Since ATA is sym-
metric, we know that there is an orthonormal basis for Rn that consists of eigenvectors of ATA.
Let {v̄1, · · · , v̄n} be such a basis corresponding to the eigenvalues of ATA, ordered so that
λ1 ≥ · · · ≥ λn. We have

λi = ||Av̄i||2 ⇒ σi =
√

λi = ||Av̄i|| (90)

i.e., the singular values of A are the lengths of the vectors Av̄1, · · · , Av̄n.

Geometrical interpretation: see Fig. 7.19 in the book, pag. 600.

The Singular Value Decomposition

We want to show that an m× n matrix A can be factored as

A = UΣV T (91)

where U is an m × m orthogonal matrix, V is an n × n orthogonal matrix, and Σ is and
m × n ”diagonal“ matrix. If the nonzero singular values of A are σ1 ≥ · · · ≥ σr > 0 and
σr+1 = · · · = σn = 0, then Σ will have the block form

Σ =





Drr Or,n−r

Om−r,r Om−r,n−r



 (92)

where D is D = diag(σi) with i = 1, · · · , r and Okl is the zero matrix k × l.

About the matrix V: To construct the orthogonal matrix V , we first find an orthonormal
basis {v̄1, · · · , v̄n} for Rn consisting of eigenvectors of the n× n symmetric matrix ATA. Then

V = [v̄1 · · · v̄n] (93)

is an orthogonal n× n matrix.

About the matrix U: For the orthogonal matrix U , we first note that {Av̄1, · · · , Av̄n} is
an orthogonal set of vectors in Rm: suppose that v̄i is the eigenvector of A

TA corresponding to
the eigenvalue λi, then, for i 6= j,

(Av̄i) · (Av̄j) = (Av̄i)
TAv̄j (94)

= v̄Ti A
TAv̄; = v̄Ti λj v̄j (95)

= λj v̄i · v̄j = 0 (96)

Next we used the fact that
σi = ||Av̄i|| (97)

and that the first r of these are nonzero. Therefore, we can normalize Av̄i, · · · , Av̄r by setting

ūi =
1

σi

Av̄i (98)

for i = 1, · · · , r, i.e. the set {ū1, · · · , ūr} is an orthonormal set in Rm. If it happens that r < m
we have to extend the set {ū1, · · · , ūr} to an orthonormal basis {ū1, · · · , ūm} form Rm.

Then we set
U = [ū1 · · · ūm] (99)
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Checking: It remains to be shown that this factorization works, i.e. UΣV T = A. Since
V T = V −1, this is equivalent to show that

AV = UΣ (100)

We know that Av̄i = σiūi for i = 1, · · · , r and ||Av̄i|| = σi = 0 for i = r + 1, · · · , n. Hence,
Av̄i = 0 for i = r + 1, · · · , n.
Therefore,

AV = A[v̄1 · · · v̄n] (101)

= [Av̄1 · · · Av̄n] (102)

= [Av̄1 · · · Av̄r 0̄ · · · 0̄] (103)

= [σ1ū1 · · · σrūr 0̄ · · · 0̄] (104)

= [ū1 · · · ūm]















σ1 · · · 0
...

. . .
...

0 · · · σr

O

O O















(105)

= UΣ (106)

as required.
The above proved the following theorem.

The Singular Value Decomposition(SVD) (Theorem 7.13): Let A be an m×n matrix
with singular values σ1 ≥ · · · ≥ σr > 0 and σr+1 = · · · = σn = 0. Then there exist and m×m
orthogonal matrix U , and n× n orthogonal matrix V , and an m× n matrix Σ of the form

Σ =





Drr Or,n−r

Om−r,r Om−r,n−r



 (107)

D =







σ1 · · · 0
...

. . .
...

0 · · · σr






(108)

such that
A = UΣV T (109)

Left and right eigenvectors: A factorization of A as in Theorem 7.13 is called a singular
value decomposition of A. The columns of U are called left singular vectors of A, and the
columns of V are called right singular vectors of A. The matrices U and V are not uniquely
determined by A, but Σ must contain the singular values of A.

The Outer Product Form of the SVD (Theorem 7.14): Let A be an m×n matrix with
singular values σ1 ≥ · · · ≥ σr > 0 and σr+1 = σn = 0. Let ū1, · · · , ūr be left singular vectors
and let v̄1, · · · , v̄r be right singular vectors of A corresponding to these singular values. Then

A = σ1ū1v̄
T
1 + · · ·+ σrūrv̄

T
r (110)
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Remark:

• The Theorem 7.13 generalizes the Spectral Theorem for positive definite, symmetric ma-
trix.

• The Theorem 7.14 generalizes the spectral decomposition for positive definite, symmetric
matrix

i.e., if A is a positive definite, symmetric matrix, then Theorems 7.13 and 7.14 reduce to the
spectral theorem and decomposition respectively.

The SVD of a matrix A contains much important information about A describe in the fol-
lowing theorem:

Theorem 7.15 Let A = UΣV T be a singular value decomposition of an m×n matrix A. Let
σ1, · · · , σr be all the nonzero singular values of A. Then

a. The rank of A is r.

b. {ū1, · · · , ūr} is an orthonormal basis for col(A).

c. {ūr+1, · · · , ūm} is an orthonormal basis for null(AT ).

d. {v̄1, · · · , v̄r} is an orthonormal basis for row(A).

e. {v̄r+1, · · · , v̄n} is an orthonormal basis for null(A).

Proof: See book, pag. 606.

Theorem 7.16: Let A = UΣV T be a singular value decomposition of an m × n matrix A
with rank r. Then the image of the unit sphere in Rn under the matrix transformation that
maps x̄ to Ax̄ is

a. the surface of an ellipsoid in Rm if r = n

b. a solid ellipsoid in Rm if r < n.

Proof: See book, pag. 607.

Remark: We can describe the effect of an m× n matrix A on the unit sphere in Rn in terms
of the effect of each factor in its SVD, A = UΣV T , from right to left (see Fig. 2):

1. Since V T is an orthogonal matrix, it maps the unit sphere to itself.

2. The m×n matrix Σ does two things: (i) the diagonal entries σr+1 = · · · = σn = 0 collapse
n− r of the dimensions of the unit sphere, leaving an r-dimensional unit sphere, (ii) the
nonzero diagonal entries σ1, · · · , σr distort into an ellipsoid.

3. The orthogonal matrix U aligns the axes of this ellipsoid with the orthonormal basis
vectors {ū1, · · · , ūr} in Rm.
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Figure 2: See details in the text (from book, Fig. 7.21, pag. 609)

Matrix Norms and the Condition Number

Theorem 7.17: Let A be an m × n matrix and let σ1, · · · , σr be all the nonzero singular
values of A. Then

||A||F =
√

σ2
1 + · · ·+ σ2

r (111)

Remark:

• If A is and m× n matrix and Q is an m×m orthogonal matrix, then ||QA||F = ||A||F

• ||A||2 = max||x̄||=1||Ax̄|| = σ1

• cond2(A) = |A−1||2 ||A||2 = σ1

σn

The pseudoinverse and Least Squares Approximation

Moore-Penrose inverse (pseudoinverse): Let A = UΣV T be an SVD for an m×n matrix
A, where

Σ =

[

D O
O O

]

(112)

and D is an r × r diagonal matrix containing the nonzero singular values σ1 ≥ · · · ≥ σr > 0 of
A. The pseudoinverse or Moore-Penrose inverse of A is the n×m matrix A+ defined by

A+ = V Σ+UT (113)

where Σ+ is the n×m matrix

Σ+ =

[

D−1 O
O O

]

(114)

Theorem 7.18: The least squares problem Ax̄ = b̄ has a unique least squares solution x̃ of
minimal length that is given by

x̃ = A+b̄ (115)

Remark: When A has LI columns, there is a unique least square solution x̃ to Ax̄ = b̄; that
is, the normal equations ATAx̄ = AT b̄ have the unique solution x̃ = (ATA)−1AT b̄. When the
columns of A are LD, then ATA is not invertible, so the normal equations have infinitely many
solutions. In this case, we will ask for the solution x̃ of minimum length. The above Theorem
7.18 fulfill this requirement.
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The Fundamental Theorem of Invertible Matrices

Here we complete the Fundamental Theorem using the information that the singular value of
a square matrix tell us when the matrix is invertible.

Theorem 7.19: Fundamental Theorem (FT) of Invertible Matrices. Version 5 of 5
Let A be an n × n matrix and let T : V → W be a LT whose matrix [T ]C←B with respect to
bases B and C of V and W , respectively, is A. The following statements are equivalent:

From Version 1

a. A is invertible.

b. Ax̄ = b̄ has a unique solution for every b̄ in Rn.

c. Ax̄ = 0 has only the trivial solution.

d. The reduced row echelon form of A is In.

e. A is a product of elementary matrices.

From Version 2

f. rank(A)=n

g. nullity(A)=0

h. The column vectors of A are LI

i. The column vectors of A span Rn

j. The column vectors of A form a basis for Rn

k. The row vectors of A are LI

l. The row vectors of A span R
n

m. The row vectors of A form a basis for Rn

From Version 3

n. detA 6= 0

o. 0 is not an eigenvalue of A

From Version 4

p. T is invertible

q. T is one-to-one

r. T is onto

s. ker(T )={0̄}

t. range(T )=W

New statements

u. 0 is not a singular value of A
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Applications

Approximation of Functions

Linear Approximation: Given a continuous function f on an interval [a, b] and a subspace
W of C[a, b], find the function ”closest“ to f inW . The problem is analogous to the least squares
fitting of data points, except now we have infinitely many data points. The Best Approximation
Theorem give the answer.

The given function f lives in the vector space C[a, b] of continuous functions on the interval
[a, b]. This is an inner product space, with inner product

〈f, g〉 =
∫ b

a

f(x)g(x)dx (116)

If W is a finite-dimensional subspace of C[a, b], then the best approximation to f in W is given
by the projection of f onto W , by Theorem 7.8. Furthermore, if {ū1, · · · , ūk} is an orthogonal
basis for W, then

projW (f) =
〈ū1, f〉
〈ū1, ū1〉

ū1 + · · ·+ 〈ūk, f〉
〈ūk, ūk〉

ūk (117)

Example 7.41: Find the best linear approximation to f(x) = ex on the interval [−1, 1].
Solution:
Linear functions are polynomials of degree 1, then we use the subspace W = P1[−1, 1] of

C[−1, 1] with the inner product 〈f, g〉 =
∫ 1

−1
f(x)g(x)dx. A basis for P1[−1, 1] is given by

{1, x}. Since
〈1, x〉 =

∫ 1

−1

f(x)g(x)dx = 0 (118)

this is an orthogonal basis. Then the best approximation to f in W is

g(x) = projW (ex) (119)

=
〈1, ex〉
〈1, 1〉 1 +

〈x, ex〉
〈x, x〉 x (120)

=
1

2
(e− e−1) + 3e−1x (121)

≈ 1.18 + 1.10x (122)

See Fig. 3.
The error is the one specified by the Best Approximation Theorem: the distance ||f − g||

between f and g relative to the inner product we are using: (the figure 0.23 was copied from
the book, pag. 621)

||ex − [
1

2
(e− e−1) + 3e−1x]|| =

√

∫ 1

−1

[

ex − 1

2
(e− e−1)− 3e−1x

]2

dx ≈ 0.23 (123)

The root mean square error can be thought of as analogous to the area between the graphs of
f and g on the specified interval.

Exercise (Example 7.42): Find the best quadratic approximation to f(x) = ex on the
interval [−1, 1].
Solution:
A quadratic form is a polynomial of the form g(x) = a + bx + cx2 in W = P2[−1, 1]. The
standard basis {1, x, x2} is not orthogonal. Procedure
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Figure 3: Best lineal approximation for ex, see text (from the book, Fig. 7.24, pag. 621)

1. First we construct an orthogonal basis using the Gram-Schmidt Process. We should get
{1, x, x2 − 1

3
}.

2. We calculate each element on the expansion projW (ex). The first two element were already
calculate in the previous example.

〈x2 − 1

3
, ex〉 =

2

3
(e− 7e−1) (124)

〈x2 − 1

3
, x2 − 1

3
〉 =

8

45
(125)

3. We put all term together in projW (ex)

g(x) = projW (ex) (126)

=
〈1, ex〉
〈1, 1〉 1 +

〈x, ex〉
〈x, x〉 x+

〈x2 − 1
3
, ex〉

〈x2 − 1
3
, x2 − 1

3
〉(x

2 − 1

3
) (127)

=
1

2
(e− e−1) + 3e−1x+

2
3
(e− 7e−1)

8
45

(x2 − 1

3
) (128)

≈ 1.00 + 1.10x+ 0.54x2 (129)

See Fig. 4.
The root mean square error gives ||ex − g(x)|| ≈ 0.04.

Trigonometric Polynomial. A function of the form

p(x) = a0 + a1 cosx+ a2 cos 2x+ · · ·+ an cos nx+ b1 sin x+ b2 sin 2x+ · · ·+ bn sinnx (130)

is called a trigonometric polynomial of order n.
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Figure 4: Best quadratic approximation of ex, see text (from the book, Fig. 7.26, pag. 622)

Trigonometric Expansion: Let us consider the vector space C[−π, π] with the inner product

〈f, g〉 =
∫ π

−π

f(x)g(x)dx (131)

and the basis B = {1, cosx, · · · , cosnx, sin x, · · · , sinnx}. The best approximation to a function
f in C[−π, π] by a trigonometric polynomial of order n is projW (f) given by

g(x) = projW (f) (132)

=
〈1, f〉
〈1, 1〉1 +

〈cosx, f〉
〈cosx, cosx〉 cosx+ · · ·+ 〈cosnx, f〉

〈cosnx, cosnx〉 cos nx

+
〈sin x, f〉

〈sin x, sin x〉 sin x+ · · ·+ 〈sinnx, f〉
〈sinnx, sin nx〉 sin nx

By defining the coefficients

a0 =
〈1, f〉
〈1, 1〉 =

〈1, f〉
2π

(133)

ak =
〈cos kx, f〉

〈cos kx, cos kx〉 =
〈cos kx, f〉

π
(134)

bk =
〈sin kx, f〉

〈sin kx, sin kx〉 =
〈sin kx, f〉

π
(135)

where we have been used

〈cos kx, cos kx〉 =

∫ π

−π

cos2 kxdx = π (136)

〈sin kx, sin kx〉 =

∫ π

−π

sin2 kxdx = π (137)

〈1, 1〉 =

∫ π

−π

12dx = 2π (138)

Then

g(x) = a0 + a1 cosx+ · · ·+ an cosnx+ b1 sin x+ · · ·+ bn sinnx
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This approximation is called the nth-order Fourier approximation to f on [−π, π]. The
coefficients a0, a1, · · · , an, b1, bn are called the Fourier coefficients of f and are given explicitly
by the definition of the inner product,

a0 =
1

2π

∫ π

−π

f(x)dx (139)

ak =
1

π

∫ π

−π

f(x) cos kxdx (140)

bk =
1

π

∫ π

−π

f(x) sin kxdx (141)
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