
Espacios vectoriales

Credit: This notes are 100% from chapter 6 of the book entitled Linear Algebra. A Modern

Introduction by David Poole. Thomson. Australia. 2006.

Vector Spaces and Subspaces

In this section we define generalized “vectors” that arise in a wide variety of examples.

Vector space: Let V be a set on which two operations, called addition and scalar multipli-
cation (by scalar we will usually mean the Real Numbers), have been defined. If ū and v̄ are
in V , the sum of ū and v̄ is denoted by ū+ v̄, and if c is a scalar, the scalar multiple of ū by c
is denoted by cū. If the following axioms hold for all ū, v̄ and w̄ in V and for all scalars c and
d, then V is called a vector space and its elements are called vectors.

1. ū+ v̄ is in V . Closure under addition

2. ū+ v̄=v̄ + ū. Commutativity

3. (ū+ v̄) + w̄ = ū+ (v̄ + w̄). Associativity

4. There exists and element 0̄ in V , called a zero vector, such that ū+ 0̄ = ū.

5. For each ū in V , there is an element - ū in V such that ū+ (−ū) = 0̄.

6. cū is in V . Closure under scalar multiplication

7. c(ū+ v̄) = cū+ cv̄. Distributivity

8. (c+ d)ū = cū+ dū. Distributivity

9. c(dū = (cd)ū

10. 1ū = ū

Comments:

• By “scalar” we will usually mean the real numbers. In this case we refer to V as a real
vector space (or a vector space over the real numbers). It is also possible for scalars to
be complex numbers or to belong to Zp, where p is prime. In these cases, V is called a
complex vector space or a vector space over Zp, respectively.
More generally, the scalar can be chosen from any number system in which, roughly
speaking, we can add, subtract, multiply, and divide according to the usual laws of
arithmetic. In abstract algebra, such a number system is called a field.
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• The definition of a vector space does not specify what the set V consist of. Neither does
it specify what the operations called “addition” and “scalar multiplication” look like.

• The vector space is defined not only by the set V but also by the operation of addition,
multiplication by scalar and the scalar field.

Examples:

• For any n ≥ 1, Rn is a vector space with the usual operations of additions and scalar
multiplication.

• The set of all 2×3 matrices is a vector space with the usual operations of matrix addition
and matrix scalar multiplication.

• The set of all m× n matrices Mmn is a vector space with the usual operations of matrix
addition and matrix scalar multiplication.

• Let P2 denote the set of all polynomials of degree 2 or less with real coefficients: p(x) ∈ P2

with p(x) = a0 + a1x+ a2x
2.

• In general, for any n ≥ 0, the set Pn of all polynomials of degree less than of equal to n,
with real coefficients, is a vector space.

• The set P of all polynomials, with real coefficients, is a vector space.

• The set F denote the set of all real-valued functions defined on the real line. If f and g
are two such functions and c is a scalar, then f + g and cf are defined by

(f + g)(x) = f(x) + g(x) (1)

and
(cf)(x) = cf(x) (2)

is a vector space.

• The set F [a, b] denote the set of all real-valued functions defined on some closed interval
[a, b] of the real line is a vector space.

• The set Z of integers with the usual operations is not a vector space since it does not
satisfied the axiom the closure under scalar multiplication, for example: for 2 ∈ Z, 1

3
(2) /∈

Z.

• Let V = R
2 with the usual definition of addition but the following definition of scalar

multiplication:

c

[

x
y

]

=

[

cx
0

]

(3)

is not a vector space since it fails the axiom 10,

1

[

x
y

]

6=

[

x
y

]

(4)
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Theorem 6.1: Let V be a vector space, ū a vector in V , and c a scalar.

a. 0ū = 0̄

b. c0̄ = 0̄

c. (−1)ū = −ū

d. If cū = 0̄, then c = 0 or ū = 0

Proof: See book, pag. 437.

Subtraction: We will write ū− v̄ for ū+ (−v̄), defining subtraction of vectors.

Linear combination: We will exploit the associativity property of addition to unambigu-
ously write ū+ v̄+ w̄ for the sum of three vectors and, more generally, c1ū1 + c2ū2+ · · ·+ cnūn

for a linear combination of vectors.

Subspace: A subset W of a vector space V is called a subspace of V if W is itself a vector
space with the same scalars, addition, and scalar multiplication as V .

As in R
n, checking to see whether a subset W of a vector space V is a subspace of V involves

testing only two of the ten vector space axioms.

Theorem 6.2: Let V be a vector space and let W be a nonempty subset of V . Then W is a
subspace of V if and only if the following conditions hold:

a. If ū and v̄ are in W , then ū+ v̄ is in W .

b. If ū is in W and c is a scalar, then cū is in W

Proof: See book, pag. 438.

Examples:

a. The set Pn of all polynomials with degree at most n is a subspace of the vector space P of
all polynomials.

b. The symmetric n×n matrices form a subspace W of Mnn, where Mnn is the set of all n×n
matrices with the usual operations of matrix addition and matrix scalar multiplication:
Let A and B be in W and let c be a scalar, then (a) (A+B)T = AT +BT = A+B and
(b) (cA)T = cAT = cA.

c. Let C be the set of all continuous real-valued functions defined on R and let D be the set
of all differentiable real-valued functions defined on R. It happens that C and D are
subspaces of F , the vector space of all real-valued functions defined on R:
From calculus, if f and g are continuous functions and c is a scalar, then f + g and cf
are also continuous. Hence, C is closed under addition and scalar multiplication and so is
a subspace of F . If f and g are differentiable, then so are f + g and cf , (f + g)′ = f ′+ g′

and (cf)′ = c(f ′). So D is also closed under addition and scalar multiplication, making
it a subspace of F .
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Comment: It is a theorem of calculus that every differentiable function is continuous. Con-
sequently, D is contained in C, i.e. D ⊂ C, making D a subspace of C. It is also the case
that every polynomial function is differentiable, so P ⊂ D, and thus P a subspace of D.
Then we have the following hierarchy of subspaces of F : P ⊂ D ⊂ C ⊂ F .

d. If V is a vector space, then V is clearly a subspace of itself. The set {0̄}, consisting of only
the zero vector, is also a subspace of V , called the zero subspace. This two subspaces are
called trivial subspaces of V .

c. If W is a subspace of a vector space V , then (from Theorem 6.2) W contains the zero vector
{0̄} of V .

Comment to (c): The above observation is consistent with the fact that lines and planes are
subspaces of R3 if and only if the contain the origin. Then, the requirement that every
subspace must contain {0̄} is sometimes useful in showing that a set is not a subspace.

Exercise for the student in class (Example 6.12): Let S be the set of all functions
that satisfy the differential equation f ′′ + f = 0. Show that S is a subspace of F . This is
an example of homogeneous linear differential equation (the solution sets of such equations are
always subspaces of F).
Solution: It is nonempty, since the nil function satisfied the above differential equation. We
have to demonstrate that (c1f1 + c2f2)

′′ + (c1f1 + c2f2) = 0.

Exercise for the student in class (Example 6.15): Using the information in ’Comment
to (c)’, check if W is a subspace of M22, where W is the set of all 2× 2 matrices of the form

[

a a + 1
0 b

]

(5)

Exercise for the student in class (Example 6.16): Let W be the set of all 2×2 matrices
with determinant 0. Demonstrate that W is not a subspace of M22. Help: used for testing the
properties the matrices

A =

[

1 0
0 0

]

B =

[

0 0
0 1

]

(6)

Spanning Sets

If S = {v̄1, v̄2, · · · , v̄k} is a set of vectors in a vector space V , then the set of all LC of
v̄1, v̄2, · · · , v̄k is called the span of v̄1, v̄2, · · · , v̄k and is denoted by span(v̄1, v̄2, · · · , v̄k) or
span(S). If V = span(S), then S is called a spanning set for V and V is said to be spanned
by S.

Exercise for the student in class (Example 6.18): Show that
M23 = span(E11, E12, E13, E21, E22, E23), where

E11 =

[

1 0 0
0 0 0

]

E12 =

[

0 1 0
0 0 0

]

E13 =

[

0 0 1
0 0 0

]

(7)

E21 =

[

0 0 0
1 0 0

]

E22 =

[

0 0 0
0 1 0

]

E23 =

[

0 0 0
0 0 1

]

(8)

Help: you have to show that any 2× 3 can be written as LC of the above six matrices.
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Exercise for the student in class (Example 6.21):

a. In M22, found the span of the matrices A, B, and C (defined below)

b. Let X an arbitrary symmetric matrix (defined below), write it in term of the above matrices.

A =

[

1 1
1 0

]

B =

[

1 0
0 1

]

C =

[

0 1
1 0

]

(9)

X =

[

x y
y z

]

(10)

Solution: [a] you should find that these matrices span the subspace of symmetric matrices. [b]
you should find that the coefficients in the expansion aA + bB + cC are a = x − z, b = z and
c = −x+ y + z.

Theorem 6.3: Let v̄1, · · · , v̄k be vectors in a vector space V .

a. span(v̄1, · · · , v̄k) is subspace of V

b. span(v̄1, · · · , v̄k) is the smallest subspace of V that contains v̄1, · · · , v̄k.

Proof: See book, pag. 445.

Linear Independence (LI), Basis, and Dimension

This section extends the notion of LI, basis, and dimension to general vector spaces. In most
cases, the proof of the theorems carry over in Sections 2.3 and 3.5 of the book, can be used
replacing R

n by the vector space V .

Linear Independence (in finite spaces)

A set of vectors v̄1, · · · , v̄k in a vector space V is linearly dependent (LD) if there are scalars
c1, · · · , ck, at least one of which is not zero, such that

c1 v̄1 + · · ·+ ck v̄k = 0̄ (11)

A set of vectors that is not LD is said to be linearly independent.

Comment: As in R
n, {v̄1, · · · , v̄k} is LI in a vector space V if and only if

c1 v̄1 + · · ·+ ck v̄k0 = 0̄ ⇒ ci = 0 (12)

for i = 1, · · · , k.

Example 6.25: Show that the set {1, x, x2, · · · , xn} is LI in Pn:
Starting with

n
∑

i=0

cix
i = c0 + c1x+

n
∑

i=2

cix
i = 0 (13)

we set x = 0 which gives c0 = 0. Then we take the derivative and get
n

∑

i=1

cii x
i−1 = c1 + c2x+

n
∑

i=3

cii x
i−1 = 0 (14)

and setting again, x = 0, we get c1 = 0. By continuing this process we demonstrate that all
ci = 0 and then the set {1, x, x2, · · · , xn} is LI.
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Theorem 6.4 (alternative formulation of LD): A set of vectors {v̄1, · · · , v̄k} in a vector
space V is LD if and only if at least one of the vectors can be expressed as LC of the others.
Proof: The proof is identical to that of Theorem 2.5.

Example 6.22: In P2, the set {f1(x), f2(x), f3(x)} where

f1(x) = 1 + x+ x2 (15)

f2(x) = 1− x+ 3x2 (16)

f3(x) = 1 + 3x− x2 (17)

is LD, since f3(x) = 2f1(x)− f2(x)

Exercise for the student in class (Example 6.26): In P2, determine whether the set
{f1(x), f2(x), f3(x)} is LI, where

f1(x) = 1 + x (18)

f2(x) = x+ x2 (19)

f3(x) = 1 + x2 (20)

Help: write c1f1(x) + c2f2(x) + c3f3(x) = 0 and search for the coefficients. You should get that
is {f1(x), f2(x), f3(x)} is LI.

Linear Independence (in infinite spaces)

A set S of vectors in a vector space V is linearly dependent if it contains finitely many LD
vectors.
A set of vectors that is not LD is said to be linearly independent.

Example 6.28: In P, shows that S = {1, x, x2, · · · } is LI:
Suppose there is a finite subset T of S that is LD. Let xm be the highest power of x in T and
let xn be the lowest power of x in T . Then there are scalars cn, cn+1, · · · , cm, not all zero, such
that

m
∑

i=n

ci x
i = 0 (21)

By taking the derivatives we can show that all ci = 0 with i = n, · · · , m, which is a contradiction.
Hence, S cannot contain finitely many linearly dependent vectors, so it is LI.

Bases

A subset B of a vector space V is a basis for V if

1. B spans V and

2. B is linearly independent

Examples:

• If ēi is the ith column of the n × n matrix, the {ē1, ē2, · · · , ēn} is a basis for Rn, called
the standard basis for Rn.

• {1, x, x2, · · · , xn} is a basis for Pn, called the standard basis for Pn.

• The set E = {E11, · · · , E1n, E21, · · · , E2n, Em1, · · · , Emn} is a basis for Mmn where the
matrices Eij are as defined above. E is called the standard basis for Mmn.
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Example 6.32: Show that B = {1 + x, x+ x2, 1 + x2} is a basis for P2.
Solution: It was already shown that B is LI. Next we must show that there are scalars c1, c2,
and c3 such that a + bx + cx2 = c1(1 + x) + c2(x + x2) + c3(1 + x2). We built a linear system
and show that the range of the matrix is 3 (not need to show only that the solution exist).

Coordinates

The most useful aspect of coordinate vectors is that they allow us to transfer information from
a general vector space to R

n, where we have the tools defines in R
n at our disposal.

Theorem 6.5: Let V be a vector space and let B be a basis for V . For every vector v̄ in V ,
there is exactly one way to write v̄ as a LC of the basis vectors in B.
Proof: It is the same as the one of Theorem 3.29.

Unique representation: The converse of Theorem 6.5 is also true. That is, if B is a set of
vectors in a vector space V with the property that every vector in V can be written uniquely
as a LC of the vectors in B, then B is a basis for V . In this sense, the unique representation
property characterizes a basis.

Coordinates: Let B = {v̄1, · · · , v̄n} be a basis for a vector space V . Let v̄ be a vector in V ,
and write v̄ = c1v̄1+ · · ·+cnv̄n. Then c1, · · · , cn are called the coordinates of v̄ with respect
to B, and the column vector

[v̄]B =







c1
...
cn






(22)

is called the coordinates vector of v̄ with respect to B.

Example: The coordinate vector of a polynomial p(x) = a0 + a1x + · · · + anx
n in Pn with

respect to the standard basis B = {1, x, · · · , xn} is the vector

[p(x)]B =











a0
a1
...
an











(23)

in R
n+1.

Example 6.35: Find the coordinate vectors [p(x)]Bi of p(x) = 2 − 3x+ 5x2 with respect to
the standard bases B1 = {1, x, x2} and B2 = {x2, x, 1}.

[p(x)]B1 =





2
−3
5



 (24)

[p(x)]B2 =





5
−3
2



 (25)
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Exercise for the student in class (Example 6.36): Find the coordinates vector [A]B of

A =

[

2 −1
4 3

]

(26)

with respect to the standard basis B = {E11, E12, E21, E22} of M22.
Solution: you should get:

[A]B =









2
−1
4
3









(27)

Theorem 6.6: Let B = {v̄1, · · · , v̄n} be a basis for a vector space V . Let ū and v̄ be vectors
in V and let c be scalar. Then

a. [ū+ v̄]B = [ū]B + [v̄]B

b. [cū]B = c[ū]B

Proff: See book, pag. 455.

Corollary to the Theorem 6.6: Coordinate vectors preserves lineal combinations:

[c1ū1 + · · ·+ ckūk]B = c1[ū1]B + · · ·+ ck[ūk]B (28)

Theorem 6.7: Let B = {v̄1, · · · , v̄n} be a basis for a vector space V and let {ū1, · · · , ūk} be
vectors in V . Then {ū1, · · · , ūk} is LI in V if and only if {[ū1]B, · · · , [ūk]B} is LI in R

n.
Prof ⇒: Assume that {ū1, · · · , ūk} is LI in V and let

c1[ū1]B + · · ·+ ck[ūk]B = 0̄ (29)

in R
n, with unknown ci.
Using the property from the Corollary above we have

[c1ū1 + · · ·+ ckūk]B = 0̄ (30)

this means that the coordinates of the vector c1ū1 + · · ·+ ckūk with respect to B are all zero.
Explicitly this implies

c1ū1 + · · ·+ ckūk = 0v̄1 + · · ·+ 0v̄n = 0̄ (31)

Since we assume that {ū1, · · · , ūk} is LI, the above relation implies that ci = 0 for i =
1, · · · , k, so {[ū1]B, · · · , [ūk]B} is LI in R

n.
The converse implication is left for the student (Exercise 32 of the book). Help: applies

similar ideas used above.

Comment: Observe that, in the special case where ūi = v̄i we have

v̄i = 0v̄1 + · · ·+ 1 v̄i + · · ·+ 0v̄n = 0̄ (32)

so
[v̄i]B = ēi (33)

and
{[v̄1]B, · · · , [v̄n]B} = {[ē1], · · · , [ēn]} (34)
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Dimension:

Dimension is the number of vectors in a basis. Since a vector space can have more that one
basis, we need to show that this definition makes sense.

Theorem 6.8: Let B = {v̄1, · · · , v̄n} be a basis for a vector space V .

a. Any set of more than n vectors in V must be LD

b. Any set of fewer than n vectors in V cannot span V .

Proof: See book, pag. 456.

The Basis Theorem (Theorem 6.9): If a vector space V has a basis with n vectors, then
every basis for V has exactly n vectors.
Proof: The proof of Theorem 3.23 also works here. See book, pag. 457.

Definitions:

Finite-dimensional: A vector space V is called finite-dimensional if it has a basis consisting
of finitely many vectors.

Dimension: The dimension of V , denoted by dimV , is the number of vectors in a basis for V .
The dimension of the zero vector space {0̄} is defined to be zero.

Infinite-dimensional: A vector space that has no finite basis is called infinite-dimensional.

Example 6.38: Since the standard basis for Rn has n vectors, dimR
n = n. In the case of R3:

• a one-dimensional subspace is span by a non-zero vector, i.e. a line through the origin,

• a two-dimensional subspace is spanned by its basis of two LI vectors, i.e. a plane through
the origin

• any three LI vectors must span R
3.

The subspaces of R3 are now completely classified according to dimension (see table 1):

dimV V
3 R

3

2 Plane through 0̄
1 Line through 0̄
0 {0̄}

Table 1: Dimensions.

Examples:

• The standard basis for Pn contains n+ 1 vectors, so dimPn = n+ 1

• The standard basis for Mmn contains mn (léase: producto de m por n) vectors, so
dimMmn = mn.

• Both P and F are infinite-dimensional, since they each contain the infinite LI set {1, x, x2, · · · }.
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Exercise (Example 6.42): Find the dimension of the vector space W of symmetric 2 × 2
matrices.
Solution: A symmetric 2× 2 matrix has the form,

[

a11 a12
a12 a22

]

= a11

[

1 0
0 0

]

+ a12

[

0 1
1 0

]

+ a22

[

0 0
0 1

]

(35)

so W is expanded by the set

S =

{[

1 0
0 0

]

,

[

0 1
1 0

]

,

[

0 0
0 1

]}

(36)

If S is LI, then it will be a basis for W . Setting

a

[

1 0
0 0

]

+ b

[

0 1
1 0

]

+ c

[

0 0
0 1

]

=

[

0 0
0 0

]

(37)

we get
a = b = c = 0 (38)

Hence S is LI and dimW=3.

Comment: The dimension of a vector space V provides with much information about V and
can greatly simplify the work needed in certain types of calculations, as the next few theorems
and examples illustrate.

Theorem 6.10: Let V be a vector space with dimV=n. Then

a. Any LI set in V contains at most n vectors.

b. Any spanning set for V contains at least n vectors.

c. Any LI set of exactly n vectors in V is a basis for V .

d. Any spanning set for V consisting of exactly n vectors is a basis for V .

e. Any LI set in V can be extended to a basis for V .

f. Any spanning set for V can be reduced to a basis for V .

Proof: See book, pag. 459.

Example 6.43: Let us see whether S is a basis for V for the following cases

a. V = P2 and S = {1 + x, 2− x+ x2, 3x− 2x2,−1 + 3x+ x2}.
Solution: since dimP = 2 + 1 = 3 and S contains 4 vectors, S is LD, hence S is not, by
Theorem 6.10(a), a basis for P2.

b. V = M22, S =

{[

1 0
1 1

]

,

[

0 −1
1 0

]

,

[

1 1
0 −1

]}

.

Solution: since dimM22 = 2× 2 = 4 and S contains three vectors, S cannot, by Theorem
6.10(b), span M22. Hence, S is not a basis for M22.

c. V = P2 and S = {1 + x, x+ x2, 1 + x2}.
Solution: since dimP = 2 + 1 = 3 and S contains 3 vectors, S will be a basis is they are
LI or if it spans P2, by Theorem 6.10(c) or (d). It was demonstrated earlier that they are
LI, do it again!. Therefore, S is a basis for P2.

10



Theorem 6.11: Let W be a subspace of a finite-dimensional vector space V . Then

a. W is finite-dimensional and dimW ≤dimV .

b. dimW=dimV if and only if W = V .

Proof: See book, pag. 460.

Change of Basis

In many applications, a problem described using one coordinate system may be solved more
easily by switching to a new coordinate system.

Introduction

From Theorem 3.29: Let S be a subspace of Rn and let B = {v̄1, · · · , v̄k} be a basis for S. For
every vector v̄ in S, there is exactly one way to write v̄ as a linear combination of the basis
vectors in B:

v̄ = c1v̄1 + · · ·+ ckv̄k (39)

After this Theorem we defined coordinates: Let S be a subspace of R
n and let B =

{v̄1, · · · , v̄k} be a basis for S. Let v̄ be a vector in S, and write v̄ = c1v̄1 + · · · + ckv̄k. Then
c1, · · · , ck are called the coordinates of v̄ with respect to B, and the column vector

[v̄]B =







c1
...

ck






(40)

is called the coordinate vector of v̄ with respect to B.
Consider the following two different coordinate systems for R2,

• B = {ū1, ū2} ū1 =

[

−1
2

]

, ū2 =

[

2
−1

]

• C = {v̄1, v̄2} v̄1 =

[

1
0

]

, v̄2 =

[

1
1

]

The vector r̄ =

[

5
−1

]

, can be written in terms of any of these two basis:

r̄ = ū1 + 3ū2 (41)

r̄ = 6v̄1 − v̄2 (42)

The coordinates of the vector r̄ with respect to B and C are

[r̄]B =

[

1
3

]

(43)

[r̄]
C

=

[

6
−1

]

(44)
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We can find the coordinates of one basis in terms of the other with the following procedures
(see also Example 6.45). In this case we calculate the coordinate in the basis C from the
coordinates in the basis B by expanding the basis vectors ūi in the basis C,

r̄ =

[

5
−1

]

= ū1 + 3ū2 (45)

=

{

−3

[

1
0

]

+ 2

[

1
1

]}

+ 3

{

3

[

1
0

]

− 1

[

1
1

]}

(46)

= {−3v̄1 + 2v̄2}+ 3 {3v̄1 − 1v̄2} (47)

= 6v̄1 − v̄2 (48)

Hence, we recover the previous result

[r̄]
C

=

[

6
−1

]

(49)

This procedure gives as a systematic way to transform the vector coordinates for a given
vector from one basis to another by using a matrix transformation (see next section).

Change-of-Basis Matrices

Let us systematized the above procedure. From r̄ = ū1 + 3ū2, we have

[r̄]
C
= [ū1 + 3ū2]C = [ū1]C + 3 [ū2]C (50)

by Theorem 6.6.
Thus,

[r̄]
C

= [[ū1]C [ū2]C ]

[

1
3

]

(51)

The coordinates of ūi in the basis C are,

ū1 = −3v̄1 + 2v̄2 ⇒ [ū1]C =

[

−3
2

]

(52)

ū2 = 3v̄1 − v̄2 ⇒ [ū2]C =

[

3
−1

]

(53)

Then,

[r̄]
C

=

[

−3 3
2 −1

] [

1
3

]

(54)

= P [r̄B] (55)

where P is the matrix whose columns are [ū1]C and [ū2]C.
Luego, si llamamos base vieja a la base B, y base nueva a la base C, la matriz P transforma

los coeficientes de un dado vector de la base vieja a la nueva. De este modo si el vector r̄ en la
base vieja se excrib́ıa como r̄ = ū1 + 3ū2, en la nueva se escribirá r̄ = c1v̄1 + c2v̄2 con

[

c1
c2

]

= [r̄]
C
= P [r̄B] =

[

−3 3
2 −1

] [

1
3

]

=

[

6
−1

]

esto es, r̄ = 6v̄1 − v̄2.
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Change of basis: Let B = {ū1, · · · , ūn} and C = {v̄1, · · · , v̄n} be bases for a vector space V .
The n × n matrix whose columns are the coordinate vectors [ū1]C , · · · , [ūn]C of the vectors in
B with respect to C is denoted by PC←B and is called the change-of-basis matrix from B to C.
That is,

PC←B = [[ū1]C [ū2]C · · · [ūn]C] (56)

Think of B as the “old” basis and C as the “new” basis. Then the columns of PC←B are just
the coordinate vectors obtained by writing the old basis vectors in terms of the new ones.

Theorem 6.12: Let B = {ū1, · · · , ūn} and C = {v̄1, · · · , v̄n} be bases for a vector space V
and let PC←B be the change-of-basis matrix from B to C. Then

a. PC←B[x̄]B = [x̄]C for all x̄ in V .

b. PC←B is the unique matrix P with the property that P [x̄]B = [x̄]C for all x̄ in V .

c. PC←B is invertible and (PC←B)
−1 = PB←C.

Proof: See book, pag. 469.

Comment: A change of basis is a transformation from R
n to itself that switches from one

coordinate system to another. The transformation PC←B takes [x̄]B as an input and returns [x̄]C
as output. While PB←C is the other way around. See Fig. 1

Figure 1: (from book)

Exercise (Example 6.46): Find the change-of-basis matrices PC←B and PB←C for the basis
B = {1, x, x2} = {ū1, ū2, ū3} and C = {1 + x, x+ x2, 1 + x2} = {v̄1, v̄2, v̄3} of P2. Then find the
coordinate vector of p(x) = 1 + 2x− x2 with respect to C.
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Solution: Changing to a standard basis is easy, so we start finding the transformation PB←C.
The coordinates vectors for C in terms of B are

v̄1 = 1 + x = ū1 + ū2 ⇒ [1 + x]
B
=





1
1
0



 (57)

v̄2 = x+ x2 = ū2 + ū3 ⇒
[

x+ x2
]

B
=





0
1
1



 (58)

v̄3 = 1 + x2 = ū1 + ū3 ⇒
[

x+ x2
]

B
=





1
0
1



 (59)

Then

PB←C =





1 0 1
1 1 0
0 1 1



 (60)

By direct calculation of the inverse of PB←C or by expressing the vectors in B as a linear
combination of vectors in C, we should get (Try this last option at home)

PC←B =





1/2 1/2 −1/2
−1/2 1/2 1/2
1/2 −1/2 1/2



 (61)

The coordinate vector of p(x) = 1+2x−x2 with respect to C can be obtained by observing
that the coordinate vector of p(x) with respect to B is

[p(x)]B =





1
2
−1



 (62)

and then change from one basis to the other using PC←B,

[p(x)]C = PC←B[p(x)]B (63)

=





1/2 1/2 −1/2
−1/2 1/2 1/2
1/2 −1/2 1/2









1
2
−1



 (64)

=





1/2 + 1 + 1/2
−1/2 + 1− 1/2
1/2− 1− 1/2



 =





2
0
−1



 (65)

Exercise for the student in class (Example 6.47): InM22, let B be the basis {E11, E21, E12, E22}
with

E11 =

[

1 0
0 0

]

E21 =

[

0 0
0 1

]

E12 =

[

0 1
0 0

]

E22 =

[

0 0
0 1

]

and let be C be the basis {A,B,C,D} with

A =

[

1 0
0 0

]

B =

[

1 1
0 0

]

C =

[

1 1
1 0

]

D =

[

1 1
1 1

]

(66)

Find the change-of-basis matrix PC←B and verify that [X ]C = PC←B[X ]B for X =

[

1 2
3 4

]
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Solution: We need to express the matrices Eij in the basis C;

E11 =

[

1 0
0 0

]

=

[

1 0
0 0

]

= A ⇒ [E11]C =









1
0
0
0









(67)

E21 =

[

0 0
1 0

]

=

[

1 1
1 0

]

−

[

1 1
0 0

]

= C −B = −B + C ⇒ [E21]C =









0
−1
1
0









E12 =

[

0 1
0 0

]

=

[

1 1
0 0

]

−

[

1 0
0 0

]

= B −A = −A +B ⇒ [E12]C =









−1
1
0
0









E22 =

[

0 0
0 1

]

=

[

1 1
1 1

]

−

[

1 1
1 0

]

= D − C = −C +D ⇒ [E12]C =









0
0
−1
1









The matrix which changes from basis B to C is

PC←B =









1 0 −1 0
0 −1 1 0
0 1 0 −1
0 0 0 1









(68)

Finally, verify that [X ]C = PC←B[X ]B for X =

[

1 2
3 4

]

The coordinate vector of X in the basis B is

X = 1E10 + 3E21 + 2E12 + 4E22 ⇒ [X ]B =









1
3
2
4









(69)

Then,

PC←B[X ]B =









1 0 −1 0
0 −1 1 0
0 1 0 −1
0 0 0 1

















1
3
2
4









(70)

=









1 + 0− 2 + 0
0− 3 + 2 + 0
0 + 3 + 0− 4
0 + 0 + 0 + 4









=









−1
−1
−1
4









(71)

This implies that X expanded in the basis C should be given by

X = −1A− 1B − 1C + 4D (72)
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Let us check this,

−1A− 1B − 1C + 4D = (−1)

[

1 0
0 0

]

+ (−1)

[

1 1
0 0

]

+ (−1)

[

1 1
1 0

]

+ 4

[

1 1
1 1

]

=

[

−1− 1− 1 + 4 0− 1− 1 + 4
0 + 0− 1 + 4 0 + 0 + 0 + 4

]

=

[

1 2
3 4

]

= X (73)

Then, it is true.

The Gauss-Jordan Method for Computing a Change-of-Basis Matrix

Finding the change-of-basis matrix to a standard basis is easy and can be done by inspection.
Finding the change-of-basis matrix from a standard basis is almost as easy, but requires the
calculation of a matrix inverse. From the example 6.46 we have that we can find [p(x)]C from
[p(x)]B and PB←C using Gaussian elimination, i.e. row reduction

[PB←C | [p(x)]B] →
[

I | (PB←C)
−1[p(x)]B

]

= [I |PC←B[p(x)]B] = [I | [p(x)]C]

We now look at a modification of the Gauss-Jordan method that can be used to find the
change-of-basis matrix between two nonstandard bases, as in Example 6.47.

Suppose B = {ū1, · · · , ūn} and C = {v̄1, · · · , v̄n} are bases for a vector space V and PC←B
is the change-of-basis matrix from B to C. The ith column of P is

[ūi]C =

[

p1i
...pni

]

(74)

so ūi = p1iv̄1 + · · ·+ pniv̄n. If E is any basis for V , then

[ūi]E = [p1iv̄1 + · · ·+ pniv̄n]E = p1i[v̄1]E + · · ·+ pni[v̄n]E (75)

In matrix form,

[ūi]E = [[v̄1]E · · · [v̄n]E ]







p1i
...
pni






(76)

which we can solve by applying Gauss-Jordan elimination to the augmented matrix

[[v̄1]E · · · [v̄n]E | [ūi]E ] (77)

There are n such systems of equations to be solved, one for each column of PC←B but the
coefficients matrix [[v̄1]E · · · [v̄n]E ] is the same in each case. Hence, we can solve all the systems
simultaneously by row reducing the n× 2n augmented matrix

[[v̄1]E · · · [v̄n]E | [ū1]E ] · · · [ūn]E ] = [C |B] (78)

Since {v̄1, · · · , v̄n} is LI, so is {[v̄1]E · · · [v̄n]E}, by Theorem 6.7. Therefore, the matrix C
whose columns are [v̄1]E · · · [v̄n]E has the n × n identity matrix I for its reduced row echelon
form, by the Fundamental Theorem. If follows that Gauss-Jordan elimination will necessarily
produce

[C |B] → [I |P ] (79)

where
P = PC←B (80)

The above prove the following theorem.
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Theorem 6.13: B = {ū1, · · · , ūn} and C = {v̄1, · · · , v̄n} be bases for a vector space V . Let
B = [[ū1]E · · · [ūn]E ] and C = [[v̄1]E · · · [v̄n]E ], where E is any basis for V . Then row reduction
applied to the n× 2n augmented matrix [C|B] produces

[C |B] → [I |PC←B] (81)

If E is a standard basis, this method is particularly easy to use, since in that case

B = PE←B (82)

and

C = PE←C (83)

Example 6.48 Rework Example 6.47 using Gauss-Jordan method.
Solution:

B = PE←B =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









(84)

and

C = PE←C =









1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1









(85)

Row reduction produces

[C |B] =









1 1 1 1 1 0 0 0
0 1 1 1 0 0 1 0
0 0 1 1 0 1 0 0
0 0 0 1 0 0 0 1









→









1 0 0 0 1 0 −1 0
0 1 0 0 0 −1 1 0
0 0 1 0 0 1 0 −1
0 0 0 1 0 0 0 1









= [I |PC←B] (86)

Linear Transformations

In this section we extend the concept of linear transformation between arbitrary vector spaces.
Linear transformation was already introduced in section 3.6 in the context of matrix transfor-
mations from R

n to R
n.

Linear Transformation (LT): A LT from a vector space V to a vector spaceW is a mapping
T : V → W such that, for all ū and v̄ in V and for all scalars c,

1. T (ū+ v̄) = T (ū) + T (v̄)

2. T (cū) = cT (ū)

This definition is equivalent to the requirement that T preserve all linear combination, i.e.
T : V → W is a LT if and only if

T (c1ū1 + · · ·+ cnūn) = c1T (ū1) + · · ·+ cnT (ūn) (87)

for all ūi in V and scalars ci with i = 1, · · · , n.
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Examples of LT:

• Every matrix transformation is a LT, i.e., if A is an m × n matrix, then TA : Rn → R
n

defined by TA(x̄) = Ax̄, with x̄ in R
n is a LT. Show it!!

• The transformation T : Mnn → Mnn defined by T (A) = AT is a LT. Show it!!

• The differential operator D : D → F defined by D(f) = f ′ is a LT. Show it!!

• The integration S : C[a, b] → R defined as S(f) =
∫ b

a
f(x)dx is a LT. Show it!!

Examples of non LT: Show them!!

1. T : M22 → R defined by T (A) = detA

2. T : R → R defined by T (x) = 2x

3. T : R → R defined by T (x) = x+ 1

Special transformations:

Zero transformation: For any vector spaces V and W , the transformation T0 : V → W that
maps every vector V to the zero vector in W is called zero transformation: T0(v̄) = 0̄ for
all v̄ in V .

Identity transformation: For any vector space V , the transformation I : V → V that maps
every vector in V to itself is called the identity transformation: I(v̄) = v̄ for all v̄ in V .

Properties of LT

In chapter 3 of the book, all LT were matrix transformations, and their properties were directly
related to properties of the matrices involved. The following Theorem is easy to demonstrate
for matrices but it takes a bit more care for the general case.

Theorem 6.14: Let T : V → W be a LT. Then

a. T (0̄) = 0̄

b. T (−v̄) = −T (v̄) for all v̄ in V .

c. T (ū− v̄) = T (ū)− T (v̄) for all ū and v̄ in V .

Proff: See book, pag. 479.

Comments:

• Property (a) can be useful in showing that certain transformation is not linear. For
example T (x) = 2x.

• Be warned, however, that there are lots of transformations that do map the zero vector
to the zero vector but that are still no linear, for example T : M22 → R defined by
T (A) = detA.

• The most important property of a LT T : V → W is that T is completely determined by
its effect on a basis for V . The example below shows what this means.
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Example 6.55: Suppose T is a LT from R
2 to P2 such that

T

[

1
1

]

= 2− 3x+ x2

T

[

2
3

]

= 1− x2 (88)

Find

T

[

−1
2

]

(89)

Procedure:

1. First we expand each vector in the basis B form by the two LI vectors

B =

{[

1
1

]

,

[

2
3

]}

(90)

2. Then, we find the coefficients of the expansion

3. Finally we use the fact that T is linear.

Solution:
[

−1
2

]

= c1

[

1
1

]

+ c2

[

2
3

]

⇒ c1 = −7, c2 = 3 (91)

then

T

[

−1
2

]

= −7T

[

1
1

]

+ 3T

[

2
3

]

= −7(2− 3x+ x2) + 3(1− x2) = −14 + 21x− 7x2 + 3− 3x2

= −11 + 21x− 10x2 (92)

Theorem 6.15: Let T : V → W be a LT and let B = {v̄1, · · · , v̄n} be a spanning set for V .
Then T (B) = {T (v̄1), · · · , T (v̄n)} spans the range of T (see the definition of range below).

Starts remembering from chapter 3 of the book: Linear Transformation...

Transformation: More generally, a transformation (or mapping or function) T from R
n to

R
m is a rule that assigns to each vector v̄ in R

n a unique vector T v̄ in R
m.

Domain-Codomain: The domain of T is Rn, and the codomain of T is Rm. This is indicated
by writing T : Rn → R

m.

Image: For a vector v̄ in the domain of T , the vector T (v̄) in the codomain is called the image
of v̄ under (the action of) T .

Range: The set of all possible images T (v̄) is called the range of T .
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...Ends remenmbering from chapter 3 of the book: Linear Transformation

Proof: The range of T is the set of all vectors in W that are of the form T (v̄), where v̄ is
in V . Let T (v̄) be in the range of T . Since B spans V , there are scalars c1, · · · , cn such that

v̄ = c1v̄1 + · · ·+ cnv̄n (93)

Applying T and using the fact that it is a LT, we get

T (v̄) = c1T (v̄1) + · · ·+ cnT (v̄n) (94)

in other words, T (v̄) is in spans(T (B)), as required.

Comment to the Theorem 6.15: The Theorem 6.15 applies, in partivular, when B is a
basis for V . It could be nice if T (B) would then be a basis for the range of T , but it is not
always the case (see section 6.5 in the book.)

Composition of LT

If T : U → V and S : V → W are LT, then the composition of S with T is the mapping S ◦ T ,
defined by

(S ◦ T )(ū) = S(T (ū)) (95)

where ū is in U .

Example 6.56: Let T : R2 → P1 and S : P1 → P2 be the LT defined by

T

[

a
b

]

= a+ (a+ b)x (96)

S(p(x)) = xp(x) (97)

find

(S ◦ T )

[

3
−2

]

(98)

We should get 3x+ x2.

Theorem 6.16: If T : U → V and S : V → W are LT, then S ◦ T : U → W is a LT.
Proof: Let ū and v̄ be in U and let C be a scalar. Then

(S ◦ T )(ū+ v̄) = S(T (ū+ v̄)) = S(T (ū) + T (v̄)) = S(T (ū)) + S(T (v̄) = (S ◦ T )(ū) + (S ◦ T )(v̄)

and

(S ◦ T )(cū) = S(T (cū)) = S(cT (ū)) = cS(T (ū)) = c(S ◦ T )(ū) (99)

Inverses of LT

A LT T : V → W is invertible if there is a LT T ′ : W → V such that

T ′ ◦ T = IV and T ◦ T ′ = IW (100)

In this case, T ′ is called an inverse for T .
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Remarks:

• The domain V and codomain W of T do not have to be the same, as they do in the case
of invertible matrix transformations. However, we will see in the next section that V and
W must be very closed related.

• The requirement that T ′ be linear could have been omitted from this definition. For, as
we will see in Theorem 6.24, it T ′ is any mapping from W to V such that T ′ ◦ T = IV
and T ◦ T ′ = IW , then T ′ is forced to be linear as well.

• If T ′ is an inverse for T , then the definition implies that T is a inverse for T ′. Hence, T ′

is invertible to.

Example 6.58: The mapping T : R2 → P1 and T ′ : P1 → R
2 are inverses. Where

T

[

a
b

]

= a+ (a+ b)x (101)

T ′(c+ dx) =

[

c
d− c

]

(102)

Solution:
Let us check that T ′ ◦ T = IR2

(T ′ ◦ T )

[

a
b

]

= T ′
(

T

[

a
b

])

= T ′(a + (a+ b)x) =

[

a
(a+ b)− a

]

=

[

a
b

]

Next, we check that T ◦ T ′ = IP1

(T ◦ T ′)(c+ dx) = T (T ′(c+ dx)) = T

[

c
d− c

]

= c+ (c+ (d− c))x = c+ dx

Theorem 6.17: If T is an invertible LT, then its inverse is unique and denoted by T−1.
Proof: The proof is the same as that of Theorem 3.6 of the book, with products of matrices
replaced by compositions of LT (Exercise 31 in the book.)

Comments about the topic of the next two sections: In the next two sections, we will
address the issue of determining when a given LT is invertible and finding its inverse when it
exists.

The Kernel and Range of a Linear Transformation

This section extends the notion of null space and column space to the kernel and range of a
LT.

Kernel: Let T : V → W be a LT. The kernel of T , denoted ker(T ), is the set of all vectors
in V that are mapped by T to 0̄ in W . That is

ker(T ) = {v̄ ∈ V : T (v̄) = 0̄} (103)
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Range: The range of T , denoted range(T ), is the set of all vectors in W that are images of
vectors in V under T . That is,

range(T ) = {T (v̄) : v̄ ∈ V } (104)

= {w̄ ∈ W : w̄ = T (v̄) for some v̄ ∈ V } (105)

Example 6.59: Let A be an m × n matrix and let T = TA be the corresponding matrix
transformation from R

n to R
m defined by T (v̄) = Av̄. Then

• the range of T is the column space of A (see Chapter 3 of the book.)

• the kernel of T is the null(A)

Exercise (Example 6.60): Find the kernel and range of the differential operator D : P3 →
P2 defined by D(p(x)) = p′(x).
Solution:

• Kernel:

ker(D) = {a0 + a1x+ a2x
2 + a3x

3 : D(a0 + a1x+ a2x
2 + a3x

3) = 0}

= {a0 + a1x+ a2x
2 + a3x

3 : a1 + 2a2x+ 3a3x
2 = 0}

dado que a1 + 2a2x+ 3a3x
2 = 0 tiene que verificarse para todo x, debe ser a1 = 0, a2 =

0 , a3 = 0, quedando a0 indeterminado. Luego,

ker(D) = {a0 : a0 ∈ R}

i.e. constant polynomials (in P3.)

• Range(D)=P2

Exercise for the student in class (Example 6.61): Find the kernel and range of the
integral operator S : P1 → R with

S(p(x)) =

∫

1

0

p(x)dx (106)

Solution:

• Kernel:

ker(S) = {f(x) = a+ bx ∈ P1 : S(p(x)) =

∫

1

0

f(x)dx = 0}

= {a+ bx ∈ P1 :

∫

1

0

(a+ bx)dx = 0}

= {a+ bx ∈ P1 : a+
b

2
= 0}

⇒ b = −2a

ker(D) = {a(1− 2x) ∈ P1}

• Range(S)=R since every real number can be obtained as the image under S of some

polynomial in P1, example, for arbitrary a ∈ R, we have
∫

1

0
adx = a.

22



Theorem 6.18: Let T : V → W be a LT. Then

a. The kernel of T is a subspace of V .

b. The range of T is a subspace of W .

Proof: (a) Since T (0̄) = 0̄, the zero vector of V is in ker(T ), so ker(T ) is nonempty. Let ū and
v̄ be in ker(T ) and let c be a scalar. Then T (ū) = T (v̄) = 0̄, so

T (ū+ v̄) = T (ū) + T (v̄) = T (0̄) + T (0̄) = 0̄ (107)

T (cū) = cT (ū) = c0̄ = 0̄ (108)

(b) see book, pag. 488

Definitions: Let T : V → W be a LT. Then

Rank: the rank of T is the dimension of the range of T , denoted by rank(T ).

Nullity: The nullity of T is the dimension of the kernel of T and is denoted by nullity(T ).

Example:

• If A is a matrix and T = TA is the matrix transformation defined by T (v̄) = Av̄, then
the range and kernel of T are the column space and the null space of A, respectively:
rank(T)=rank(A) and nullity(T)=nullity(A)

• The rank and nullity of the LT D(p(x) = p′(x), D : P3 → P2 are: Since the range(D)=P2

(see above) we have rank(D)=dim P2=3. While the kernel of D is the set of all constant
polynomials: ker(D)={a : a ∈ R} = {a · 1 : a ∈ R}, hence {1} is a basis for ker(D), son
nullity(D)=dim(ker(D))=1.

• The rank and nullity of S : P1 → R with S(p(x)) =
∫

1

0
p(x)dx are: since range(S)=R,

then rank(S)=dim(R)=1. The kernel ker(S)={a(1 − 2x) : a ∈ R} = span(1 − 2x), the
1− 2x is a basis for ker(S). Therefor, nullity(S)=dim(ker(S))=1.

The Rank Theorem (Theorem 6.19): Let T : V → W be a LT from a finite-dimensional
vector space V into a vector space W . Then

rank(T ) + nullity(T ) = dim(V ) (109)

Proof: See book, pag. 490.

Examples: Using the information from the above examples we have

• D(p(x) = p′(x), D : P3 → P2

rank(D) + nullity(D) = 3 + 1 = 4 = dim(P3) (110)

• S : P1 → R with S(p(x)) =
∫

1

0
p(x)dx

rank(S) + nullity(S) = 1 + 1 = 2 = dim(P1) (111)
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Exercise (Example 6.67): Find the rank and nullity of the LT T : P2 → P3 define by
T (p(x)) = xp(x). (firs check that T is linear)
Solution:

ker(T ) = {a+ bx+ cx2 ∈ P2 : T (a+ bx+ cx2) = 0}

= {a+ bx+ cx2 : ax+ bx2 + cx3 = 0}

⇒ a = b = c = 0

ker(T ) = {0}

so we have nullity(T)=dim(ker(T))=0. The Rank Theorem implies that

rank(T ) = dim(P2)− nullity(T ) = 3− 0 = 3 (112)

Exercise for the student in class (Example 6.68): Let W be the vector space of all
symmetric 2× 2 matrices. Define a LT T : W → P2 by (check that it is linear)

T

[

a b
b c

]

= (a− b) + (b− c)x+ (c− a)x2 (113)

Find the rank and nullity of T .
Solution: we start calculating the nullity because it is easier that to calculate the rank:

ker(T ) =

{[

a b
b c

]

: T

[

a b
b c

]

= 0

}

(114)

=

{[

a b
b c

]

: (a− b) + (b− c)x+ (c− a)x2 = 0

}

(115)

⇒ (a− b) = 0, (b− c) = 0 (c− a) = 0 (116)

⇒ a = b, b = c c = a ⇒ a = b = c (117)

ker(T ) =

{[

a a
a a

]}

= span

([

1 1
1 1

])

(118)

then nullity(T)=dim(ker(T))=1.
Finally, from the Rank Theorem: rank(T)=dim W -nullity(T)=3-1=2.

One-to-One and Onto Linear Transformation

This section deals with the criteria for a LT to be invertible.

One-to-one transformation: A LT T : V → W is called one-to-one if T maps distinct
vectors in V to distinct vectors in W another way to say is

• T : V → W is one-to-one if, for all ū and v̄ in V , ū 6= v̄ implies that T (ū) 6= T (v̄) or

• T : V → W is one-to-one if, for all ū and v̄ in V , T (ū) = T (v̄) implies that ū = v̄

Onto transformation: A LT T : V → W is called onto if range(T)=W. Another way to say
it is: T : V → W is onto if, for all w̄ in W , there is at least one v̄ in V such that w̄ = T (v̄).
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Examples: Let us consider T : R2 → R
3 define by

T

[

x
y

]

=





2x
x− y
0



 (119)

one-to-one : It is one-to-one as we show below. Let

T

[

x1

y1

]

= T

[

x2

y2

]

(120)

then




2x1

x1 − y1
0



 =





2x2

x2 − y2
0



 (121)

so x1 = x2 and x1 − y1 = x2 − y2, then y1 = y2. Hence

[

x1

y1

]

=

[

x2

y2

]

, so T is one-to-one.

onto: T is not onto, since its range is not all of R3.

Theorem 6.20: A LT T : V → W is one-to-one if and only if ker(T )={0̄}.
Proof: See book, pag. 494.

Example 6.70: Show that the LT T : R2 → P1 define by

T

[

a
b

]

= a+ (a + b)x (122)

is one-to-one and onto.
Solution:

The kernel of T is

[

a
b

]

=

[

0
0

]

since

T

[

a
b

]

= a+ (a+ b)x = 0 ⇒ a = b = 0 (123)

Consequently, T is one-to-one by the Theorem 6.20.
By the Rank Theorem, rank(T)=dim(R2)− nullity(T ) = 2− 0 = 2. Therefore, the range of T
is a two-dimensional subspace of R2, and hence range(T)=R

2. It follows that T is onto.

Theorem 6.21: Let dimV=dimW=n. The a LT T : V → W is one-to-one if and only if it is
onto.
Proof: See book, pag. 494.

Theorem 6.22: Let T : V → W be a one-to-one LT. If S = {v̄1, · · · , v̄k} is LI set in V , then
T (S) = {T (v̄1), · · · , T (v̄k)} is a LI set in W .
Proof: See book, pag. 495.

Corollary 6.23: Let dimV=dimW=n. Then a one-to-one LT: T : V → W maps a basis for
V to a basis for W .
Proof: See book, pag. 495.
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Example 6.71: Let T : R2 → P1 be a LT define by

T

[

a
b

]

= a+ (a + b)x (124)

Then, by Corollary 6.23, the standard basis E = {ē1, ē2} for R2 is mapped to a basis T (E) =
{T (ē1), T (ē2)} of P1. We find that

T (ē1) = T

[

1
0

]

= 1 + (1 + 0)x = 1 + x (125)

T (ē2) = T

[

0
1

]

= 0 + (0 + 1)x = x (126)

(127)

It follows that {1 + x, x} is a basis for P1.

Theorem 6.24: A LT T : V → W is invertible if and only if it is one-to-one and onto.
Proof: See book, pag. 496.

Isomorphisms of Vector Spaces

A LT T : V → W is called an isomorphisms if it is one-to-one and onto. If V and W are two
vector spaces such that there is an isomorphism from V to W , then we say that V is isomorphic
to W and write V ∼= W .

Examples: The following vector spaces are isomorphic each other:

• Pn and R
n (think about the definition of coordinates) (Example 6.72 in the book, pag.

497)

• Mmn and R
mn (think about the definition of coordinates) (Example 6.73 in the book,

pag. 497)

The easiest way to check if two vector spaces are isomorphic is simply to check their dimen-
sions (see the next theorem)

Theorem 6.25: Let V and W be two finite-dimensional vector spaces. Then V is isomorphic
to W if and only if dimV=dimW .
Proof: See book, pag. 498.

Examples:

• Pn and R
n are no isomorphic since, dim(Pn)=n+1 6=dim(Rn)=n.

• The vector space of symmetric matricesMsym
22 is isomorphic with R

3, since dim(Msym
22 )=dim(R3)=3.

(see above previous examples when we calculate basis in order to determine the dimension
of a basis and spaces)
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The Matrix of a Linear Transformation

In this section it is shown that every LT between finite-dimensional vector spaces can be
represented as a matrix transformation.
Suppose that V is an n-dimensional vector space, W is an m-dimensional vector space, and
T : V → W is a LT. Let B and C be bases for V and W , respectively. Then the coordinate
vector mapping R(v̄) = [v̄]B defines an isomorphism R : V → R

n. At the same time, we have
an isomorphism S : W → R

m given by S(w̄) = [w̄]C, which allows us to associate the image
T (v̄) with the vector [T (v̄)]C in R

m (see Fig. 2 Since R is an isomorphism, it is invertible, so

Figure 2: (from the book)

we may form the composite mapping

S ◦ T ◦R−1 : Rn → R
m (128)

which maps [v̄]B to [T (v̄)]C. Since this mapping goes from R
n to R

m, this is a matrix
transformation.

We would like to find the m× n matrix A such that

A[v̄]B = (S ◦ T ◦R−1)[v̄]B (129)

= [T (v̄)]C (130)

Where the columns of A are the images of the standard basis vectors for Rn under S◦T ◦R−1.
But, if B = {v̄1, · · · , v̄n} is a basis for V , then

R(v̄i) = [v̄i]B (131)

=











0
...

1
...
0











(132)

= ēi (133)

so
R−1(ēi) = v̄i (134)

Therefore, the ith column of the matrix A we seek is given by

(S ◦ T ◦R−1)(ēi) = S(T (R−1(ēi))) (135)

= S(T (v̄i)) (136)

= [T (v̄)]C (137)
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which is the coordinate vector of T (v̄) with respect to the basis C of W .

Theorem 6.26: Let V and W be two finite-dimensional vector spaces with bases B and C,
respectively, where B = {v̄1, · · · , v̄n}. If T : V → W is a LT, then the m× n matrix A defined
by

A = [[T (v̄1)]C| · · · |[T (v̄n)]C] (138)

satisfies

A[v̄]B = [T (v̄)]C (139)

for every vector v̄ in V .
Where the matrix A is called matrix of T with respect to the bases B and C. The

relationship is illustrated in diagram of fig. 3 called commutative diagram,

Figure 3: Commutative diagram (from the book).

Remarks:

• The matrix of a LT T with respect to bases B and C is sometimes denoted by [T ]C←B

• The matrix of a LT with respect to given basis is unique. That is, for every vector v̄
in V , there is only one matrix A whit the property specified by Theorem 6.26–namely,
A[v̄]B = [T (v̄)]C

• The matrix [T ]C←B depends on the order of the vectors in the bases B and C (remember
the exercises done earlier)

Exercise (Example 6.76): Let T : R3 → R
2 be the LT defined by

T





x
y
z



 =

[

x− 2y
x+ y − 3z

]

(140)

and let B = {ē1, ē2, ē3} and C = {ē2, ē1} be bases for R3 and R
2, respectively. Find the matrix

of T with respect to B and C and verify Theorem 6.26 for

v̄ =





1
3
−2



 (141)
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Solution:
We want to built the matrix

A = [T ]C←B = [[T (v̄1)]C| · · · |[T (v̄n)]C] (142)

For this end we need:

a. First calculate the images T (ēi) of the vectors of the basis B

b. Then calculates the coefficient vectors of these images with respect to the basis C of W

c. Finally, we built the matrix [[T (v̄1)]C| · · · |[T (v̄n)]C]

[a.]

T (ē1) =

[

1
1

]

T (ē2) =

[

−2
1

]

T (ē3) =

[

0
−3

]

(143)

[b.] Be careful with the order of the basis vectors in C!

T (ē1) =

[

1
1

]

=

[

0
1

]

+

[

1
0

]

(144)

⇒ [T (v̄1)]C =

[

1
1

]

(145)

T (ē2) =

[

−2
1

]

=

[

0
1

]

− 2

[

1
0

]

(146)

⇒ [T (v̄2)]C =

[

1
−2

]

(147)

T (ē3) =

[

0
−3

]

= −3

[

0
1

]

+ 0

[

1
0

]

(148)

⇒ [T (v̄3)]C =

[

−3
1

]

(149)

[c.]

A = [T ]C←B (150)

= [[T (v̄1)]C| · · · |[T (v̄n)]C ] (151)

=

[

1 1 −3
1 −2 0

]

(152)

In order to verified the Theorem we have to check that the matrix product A[v̄]B = [v̄]C.
Then we have to calculate

c. The action of T on v̄ and built it coordinate vector T (v̄) in the bases C

d. Calculate the product of the matrix A = [T ]C←B time the coordinates of the vector v̄ in the
basis B: A[v̄]B

e. Check that (c) and (d) give the same vector
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[c.]

T (v̄) = T









1
3
−2







 (153)

=

[

−5
10

]

(154)

= 10

[

0
1

]

− 5

[

1
0

]

(155)

⇒ [v̄]C =

[

10
−5

]

(156)

[d.]

v̄ =





1
3
−2



 (157)

=





1
0
0



+ 3





0
1
0



− 2





0
0
1



 (158)

⇒ [v̄]B =





1
3
−2



 (159)

Next,

[T ]C←B[v̄]B =

[

1 1 −3
1 −2 0

]





1
3
−2



 (160)

=

[

10
−5

]

(161)

[e.] OK!

Matrices of Composite and Inverse Linear Transformations

Theorem 6.27: Let U, V , and W be finite dimensional vector spaces with bases B, C, and
D, respectively. Let T : U → V and S : V → W be LT. Then

[S ◦ T ]D←B = [S]D←C[T ]C←B (162)

Proof:See book, pag. 508.

Example 6.81: Use matrix methods to compute

(S ◦ T )

[

a
b

]

(163)

for the LT T : R2 → P1 and S : P1 → P2 where

T

[

a
b

]

= a+ (a+ b)x (164)

S(p(x)) = xp(x) (165)
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Choosing the standard bases E , E ′ and E ′′ for R2, P1 and P2, respectively. These canonical
basis are

E = {ē1, ē2} (166)

E ′ = {1, x} (167)

E ′′ = {1, x, x2} (168)

Solution:
We need to compute

[S ◦ T ]E←E ′′ = [S]E ′′←E ′[T ]E ′←E (169)

then we need to calculate

a. [T ]E ′←E

b. [S]E ′′←E ′

c. Next, using the Theorem 6.27 we calculate the matrix (S ◦T )E ′′←E = [S]E ′′←E ′[T ]E ′←E , i.e.
the product of the above two matrices.

d. Using the theorem 6.26 we calculate the coordinate vector of the vector which results
from the action of (S ◦ T ):

[

(S ◦ T )

[

a
b

]]

E ′′

= [(S ◦ T )]E ′′←E

[

a
b

]

(170)

e. With the information of the vector coordinate of the vector in the vector space P2 we
rebuilt the vector expanded in the basis E ′′.

[a.] [T ]E ′←E is the matrix generated by the coordinates vector of the images of the basis vector
of E under la action of T expressed in the basis E ′, then

T (ē1) = 1 + (1 + 0)x = 1 + x (171)

T (ē2) = 0 + (0 + 1)x = x (172)

Next we expand these images in the basis E ′

T (ē1) = 1 + x = (1)1 + (1)x ⇒ [T (ē1)]E ′ =

[

1
1

]

(173)

T (ē2) = x = (0)1 + (1)x ⇒ [T (ē2)]E ′ =

[

0
1

]

(174)

Then

[T ]E ′←E =

[

1 0
1 1

]

(175)
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[b.] [S]E ′′←E ′ is the matrix generated by the coordinates vector of the imagines of the basis
vector of E ′ under la action of S expressed in the basis E ′′, then

S(1) = x(1) = x (176)

S(x) = x(x) = x2 (177)

Next we expand these images in the basis E ′′

S(1) = x = (0)1 + (1)x+ (0)x2 (178)

⇒ [S(1)]E ′′ =





0
1
0



 (179)

S(x) = x2 = (0)1 + (0)x+ (1)x2 (180)

⇒ [S(x)]E ′′ =





0
0
1



 (181)

Then

[S]E ′′←E ′ =





0 0
1 0
0 1



 (182)

[c.]

(S ◦ T )E ′′←E = [S]E ′′←E ′[T ]E ′←E (183)

=





0 0
1 0
0 1





[

1 0
1 1

]

(184)

=





0 0
1 0
1 1



 (185)

[d.]

[

(S ◦ T )

[

a
b

]]

E ′′

= [(S ◦ T )]E ′′←E

[

a
b

]

(186)

=





0 0
1 0
1 1





[

a
b

]

(187)

=





0
a

a + b



 (188)

[e.] In the basis

E ′′ = {1, x, x2} (189)
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the vector (S ◦ T )v̄ results,

(S ◦ T )v̄ = (S ◦ T )

[

a
b

]

(190)

= (0)1 + (a)x+ (a + b)x2 (191)

= ax+ (a+ b)x2 (192)

which is the same result we obtained earlier in the Example 6.56.

Theorem 6.28: Let T : V → W be a LT between n-dimensional vector spaces V and W and
let B and C be bases for V and W , respectively. Then T is invertible if and only if the matrix
[T ]C←B is invertible. In this case,

([T ]C←B)
−1 = [T−1]B←C (193)

Notice the change in the order of the basis!!
Proof: See book, pag. 509.

Example 6.82: In Example 6.70, the LT T : R2 → P1 defined by

T

[

a
b

]

= a+ (a + b)x (194)

was shown to be one-to-one and onto and hence invertible. Find T−1.
Solution:
In Example 6.81, we found the matrix of T with respect to the standard bases E and E ′ for R2

and P1, respectively, to be

[T ]E ′←E =

[

1 0
1 1

]

(195)

By Theorem 6.28, it follows that the matrix of T−1 with respect to E ′ and E is

[T−1]E←E ′ = ([T ]E ′←E)
−1 (196)

=

[

1 0
1 1

]−1

(197)

=

[

1 0
−1 1

]

(198)

By theorem 6.26,

[T−1(a+ bx)]E = [T−1]E←E ′[a+ bx]E ′ (199)

=

[

1 0
−1 1

] [

a
b

]

(200)

=

[

a
b− a

]

(201)

From this coordinate vector we can reconstruct the vector using the basis E of R2

T−1(a + bx) = aē1 + (b− a)ē2 =

[

a
b− a

]

(202)

Notice that even with the last two vector looks the same they have very different mean,
clarified it by yourself!
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Change of Basis and Similarity

Theorem 6.29: Let V be a finite-dimensional vector space with bases B and C and let
T : V → V be a LT. Then

[T ]C = (PB←C)
−1[T ]BPB←C (203)

Notice that the matrix on the most right is the change-of-basis from C to B!!.
Comentario: notar que esto no es el cambio de base del vector v̄ dentro del mismo espacio V ,
sino como transforma las coordenadas del operador T en dos bases diferentes dentro del mismo
espacio V !!!.

Example 6.84 This example is an application of the above Theorem. The Theorem is used
in order to find a basis with respect to which the matrix of LT is diagonal. Let T : R2 → R

2

be defined by

T

[

x
y

]

=

[

x+ 3y
2x+ 2y

]

(204)

If possible, find a basis C for R2 such that the matrix of T with respect to C is diagonal.
Solution:

a. First we write the matrix T with respect to the canonical basis E of R2

b. Search for the eigenvalues and eigenvectors

c. Then we define a new basis with the eigenvectors

[a.] For this end, first we calculate the action of T on each vector of the canonical basis and
then we build the matrix [T ]E with the images as columns:

T (ē1) = T

([

1
0

])

=

[

1
2

]

= (1)ē1 + (2)ē2 (205)

⇒ [T (ē1)]E =

[

1
2

]

(206)

T (ē2) = T

([

0
1

])

=

[

3
2

]

= (3)ē1 + (2)ē2 (207)

⇒ [T (ē2)]E =

[

3
2

]

(208)

Then

[T ]E =

[

1 3
2 2

]

(209)

[b.] We search for the eigenvalues and the corresponding eigenvectors and generates the di-
agonal matrix D and the P in the decomposition [T ]E = P−1DP .
We should get

D =

[

4 0
0 −1

]

(210)

P =

[

1 3
1 −2

]

(211)

Then
P−1[T ]EP = D (212)
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[d.] Now we defined a new basis C form by the columns of P , i.e. the eigenvectors of [T ]E .
This implies that P = PE←C, i.e. the change-of-basis matrix from C to E ,

PE←C =

[

1 3
1 −2

]

(213)

then

(PE←C)
−1[T ]EPE←C = D (214)

[T ]
C

= D (215)

so, the matrix T with respect to the basis

C =

{[

1
1

]

,

[

3
−2

]}

(216)

is diagonal!!

Diagonalizable Transformation: Let V be a finite-dimensional vector space and let T :
V → V be a LT. Then T is called diagonalizable if there is a basis C for V such that the matrix
[T ]C is a diagonal matrix.

Remark: It is not hard to show that if B is any basis for V , then T is diagonalizable if and
only if the matrix [T ]B is diagonalizable.

Theorem 4.17: Fundamental Theorem (FT) of Invertible Matrices. Version 4 of 5
Let A be an n × n matrix and let T : V → W be a LT whose matrix [T ]C←B with respect to
bases B and C of V and W , respectively, is A. The following statements are equivalent:

From Version 1

a. A is invertible.

b. Ax̄ = b̄ has a unique solution for every b̄ in R
n.

c. Ax̄ = 0 has only the trivial solution.

d. The reduced row echelon form of A is In.

e. A is a product of elementary matrices.

From Version 2

f. rank(A)=n

g. nullity(A)=0

h. The column vectors of A are LI

i. The column vectors of A span R
n

j. The column vectors of A form a basis for Rn

k. The row vectors of A are LI
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l. The row vectors of A span R
n

m. The row vectors of A form a basis for Rn

From Version 3

n. detA 6= 0

o. 0 is not an eigenvalue of A

New statements

p. T is invertible

q. T is one-to-one

r. T is onto

s. ker(T )={0̄}

t. range(T )=W

Proof: The equivalence (q)⇔(s) is Theorem 6.20, and (r)⇔(t) is the definition of onto. Since
A is n×n, we must have dimV=dimW=n. From Theorem 6.21 and 6.24, we get (p)⇔(q)⇔(r).
Finally, we connect the last five statements to the others by Theorem 6.28, which implies that
(a)⇔(p).
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