
Ortogonalidad

Credit: This notes are 100% from chapter 5 of the book entitled Linear Algebra. A Modern

Introduction by David Poole. Thomson. Australia. 2006.

Orthogonality in R
n

In this section, we will generalize the notion of orthogonality or vectors in R
n from two vectors to

sets of vectors. In doing so, we will see that two properties make the standard basis {ē1, · · · , ēn}
of Rn easy to work with: (i) any two distinct vectors in the set are orthogonal and (ii) each
vector is a unit vector.

Orthogonal and Orthonormal Sets of Vectors

Orthogonal set: A set of vectors {v̄1, · · · , v̄n} in R
n is called orthogonal set if all pairs of

distinct vectors in the set are orthogonal-that is, if

v̄i · v̄j = 0 (1)

whenever i 6= j, for i, j = 1, · · · , k.

Theorem 5.1 If {v̄1, · · · , v̄n} is an orthogonal set of nonzero vectors in R
n, then these vectors

are LI.
Proof: See book, pag. 366.

Orthogonal basis: An orthogonal basis for a subspace W of Rn is a basis of W that is an
orthogonal set.

Example 5.3: Find an orthogonal basis for the subspace W of R3 given by

W =











x
y
z



 : x− y + 2z = 0







(2)

A basis for W is given by





x
y
z



 =





y − 2z
y
z



 = y





1
1
0



+ z





−2
0
1



 (3)

but, they are not orthogonal.
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Let us take one of them,

v̄ =





1
1
0



 (4)

an orthogonal vector w̄ to v̄ must verifies

v̄ · w̄ = vT w̄ = [1 1 0]





x
y
z



 = x+ y = 0 (5)

Since w must also belong to the plane W , it must verifies

x− y + 2z = 0 (6)

Solving the LSE

x+ y = 0 (7)

x− y + 2z = 0 (8)

we get y = −x, 2z = −x+ y = −2x ⇒ z = −x, then

w̄ = t





1
−1
−1



 (9)

with t in R. Finally,

v̄ =





1
1
0



 , and w̄ =





1
−1
−1



 (10)

form and orthogonal basis for the subspace W with dimension two.

Theorem 5.2: Let {v̄1, · · · , v̄k} be an orthogonal basis for a subspace W of Rn and let w̄ be
any vector in W . Then the unique scalars c1, · · · , ck such that

w̄ = c1v̄1 + · · ·+ ckv̄k (11)

are given by

ci =
w̄ · v̄i
v̄i · v̄i

(12)

for i = 1, · · · , k.
Proof: Since {v̄1, · · · , v̄k} is a basis for W , we known from Theorem 3.29 that there are unique
scalars c1, · · · , ck such that w̄ = c1v̄1 + · · ·+ ckv̄k, then

w̄ · v̄i = (c1v̄1 + · · ·+ ckv̄k) · v̄i (13)

since v̄j · v̄i = δjiv̄i · v̄i results

w̄ · v̄i = ci(v̄i · v̄i) ⇒ ci =
w̄ · v̄i
v̄i · v̄i

(14)

Orthonormal basis: A set of vectors in R
n is an orthonormal set if it is an orthogonal set

of unit vectors. An orthonormal basis for a subspace W of Rn is a basis of W that is an
orthonormal set.
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Theorem 5.3: Let {q̄1, · · · , q̄k} be an orthonormal basis for a subspace W of Rn and let w̄
be any vector in W . Then

w̄ = (w̄ · q̄1)q̄1 + · · ·+ (w̄ · q̄k)q̄k (15)

and this representation is unique.

Orthogonal Matrices

In this section we will examine the properties of matrices whose columns form an orthonormal
set.

Theorem 5.4: The columns of an m × n matrix Q form an orthonormal set if and only
QTQ = In.
Proof: We need to show that (QTQ)ij = δij . Let q̄i, denote the ith column of Q. The (i, j)
entry of QTQ is the dot product of the ith row of QT and the jth column of Q: (QTQ)ij = q̄i · q̄j .
Now the columns Q form and orthonormal set if q̄i · q̄j = δij = (QTQ)ij .

Orthogonal matrix: An n× n matrix Q whose columns form and orthonormal set is called
an orthogonal matrix.

Theorem 5.5: A square matrix Q is orthogonal if and only if Q−1 = QT .
Proof: By Theorem 5.4, Q is orthogonal if and only if QTQ = In. By Theorem 3.13 this is
true if and only if Q is invertible and Q−1 = QT .

Exercise for the student in class: Show that the following two matrices are orthogonal
and find their inverses:

A =





0 1 0
0 0 1
1 0 0



 B =

[

cosθ −sinθ
sinθ cosθ

]

(16)

Theorem 5.6: Let Q be an n× n matrix. The following statements are equivalent:

a. Q is orthogonal

b. ‖ Qx̄ ‖=‖ x̄ ‖ for every x̄ in R

c. Qx̄ ·Qȳ = x̄ · ȳ for every x̄ and ȳ in R

Proof: See book, pag. 372.

Theorem 5.7: If Q is an orthogonal matrix, then its rows form an orthonormal set.
Proof: From Theorem 5.5 Q−1 = QT . Therefore (QT )−1 = (Q−1)−1 = Q = (QT )T so QT is an
orthogonal matrix. Thus, the columns of QT -which are the rows of Q-form an orthogonal set.

Theorem 5.8: Let Q be an orthogonal matrix.

a. Q−1 is orthogonal

b. det Q = ±1

c. If λ is an eigenvalue of Q, the |λ| = 1.

d. If Q1 and Q2 are orthogonal n× n matrices, then so is Q1Q2

Proof: See book, pag. 373.
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Orthogonal Complements and Orthogonal Projections

In this section we will generalize the concepts of normal vector to a plane and will extend the
concept of the projection of one vector onto another.

Orthogonal Complements

A normal vector n̄ to a plane is orthogonal to every vector in that plane. If the plane passes
through the origin, then it is a subspace W of R3, as is span(n̄). Hence, we have two subspaces
of R3 with the property that every vector of one is orthogonal to every vector of the other.

Orthogonal Complement: Let W be a subspace of Rn. We say that a vector v̄ in R
n

is orthogonal to W if v̄ is orthogonal to every vector in W . The set of all vectors that are
orthogonal to W is called the orthogonal complement of W , denoted W⊥,

W⊥ = {v̄ in R
n : v̄ · w̄ = 0 in W} (17)

Theorem 5.9: Let W be a subspace of Rn.

a. W⊥ is a subspace of Rn.

b. (W⊥)⊥ = W

c. W ∩W⊥ = {0̄}

d. If W = span(w̄1, · · · , w̄k), then v̄ is in W⊥ if and only if v̄ · w̄i = 0 for all i = 1, · · · , k

Proof: See book, pag. 376.

Theorem 5.10: Let A be an m × n matrix. Then the orthogonal complement of the row
space of A is the null space of A

(row(A))⊥ = null(A) (18)

and the orthogonal complement of the column space of A is the null space of AT

(col(A))⊥ = null(AT ) (19)

Proof: If x̄ is a vector in R
n, then x̄ is in (row(A))⊥ if and only if x̄ is orthogonal to every

row of A. But this is true if and only if Ax̄ = 0̄, which is equivalent to x̄ being in null(A). To
show the second identity we replace A by AT and use the fact that row(AT ) = col(A).

Exercise for the student in class(example 5.10): Consider the subspaceW of R5 spanned
by w̄1, w̄2 and w̄3

w̄1 =













1
−3
5
0
5













, w̄2 =













−1
1
2

−2
3













, w̄3 =













0
−1
4

−1
5













(20)
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The subspace W is the same as the column space of A, with

A =













1 −1 0
−3 1 −1
5 2 4
0 −2 −1
5 3 5













(21)

Using W⊥ = (col(A))⊥ = null(AT ), find a basis for W⊥.
By reducing

[AT |0̄] =





1 −3 5 0 5 0
−1 1 2 −2 3 0
0 −1 4 −1 5 0



 →





1 0 0 3 4 0
0 1 0 1 3 0
0 0 1 0 2 0



 (22)

then

x1 + 3x4 + 4x5 = 0 (23)

x2 + x4 + 3x5 = 0 (24)

x3 + 2x5 = 0 (25)

then

x̄ =













−3x4 − 4x5

−x4 − 3x5

−2x5

x4

x5













= x4













−3
−1
0
1
0













+ x5













−4
−3
−2
0
1













(26)

Then, a basis for W⊥ is


































−3
−1
0
1
0













,













−4
−3
−2
0
1



































(27)

Fundamental subspaces: an m × n matrix A has four subspaces, which are called funda-
mental subspaces:

1. row(A)

2. null(A)

3. col(A)

4. null(AT )

The first two are orthogonal complements in R
n, and the last two are orthogonal complements

in R
m

Transformation between subspaces of A: The m×n matrix A defines a LT from R
n into

R
m whose range is col(A). This transformation sends null(A) to 0̄ in R

m.
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Exercise for the student in class(example 5.9): Find the fundamental subspaces of the
matrix A, with

A =









1 1 3 1 6
2 −1 0 1 −1

−3 2 1 −2 1
4 1 6 1 3









(28)

Basis for row(A)

By reducing the matrix to its echelon form we get

R =









1 0 1 0 −1
0 1 2 0 3
0 0 0 1 4
0 0 0 0 0









(29)

By Theorem 3.20, row(A)=row(R). From the reduce matrix R one can see that the first three
rows are LI. Then a basis for the row space of A is

{[1 0 1 0 − 1], [0 1 2 0 3][0 0 0 1 4]} (30)

Basis for the col(A)

We obtain the column basis by selecting the vectors from the matrix A which correspond to the
column of the reduced matrix R which correspond to the heads (pivots). The justification of this
procedure is as follows: considering the system Ax̄ = 0, the reduction from A to R represents
a dependence relation among the columns of A. Since the elementary row operations do not
affect the solution set, if A is row equivalent to R, the columns of A have the same dependence
relationships as the columns of R. Then the columns ā1, ā2, ā4 from a basis for the col(A),























1
2

−3
4









,









1
−1
2
1









,









1
1

−2
1























(31)

Basis for null(A)

We have to find the solution of the homogeneous system Ax̄ = 0 from the augmented matrix

of A, [A|0̄] =









1 1 3 1 6 0
2 −1 0 1 −1 0

−3 2 1 −2 1 0
4 1 6 1 3 0









From the previous calculation we have

[R|0̄] =









1 0 1 0 −1 0
0 1 2 0 3 0
0 0 0 1 4 0
0 0 0 0 0 0









(32)

then,

x1 + x3 − x5 = 0 (33)

x2 + 2x3 + 3x5 = 0 (34)

x4 + 4x5 = 0 (35)
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Since the leading 1s are in columns 1, 2 and 4, we solve for x1, x2 and x4. Let us renamed
x3 = s and x5 = t, then,

x̄ =













x1

x2

x3

x4

x5













= s













−1
−2
1
0
0













+ t













1
−3
0

−4
1













(36)

Then, the following vectors form a basis for null(A)



































−1
−2
1
0
0













,













1
−3
0

−4
1



































(37)

Basis for null(AT )

We have to find the solution of the homogeneous system AT x̄ = 0 from the augmented matrix
of A,

[AT |0̄] =













1 2 −3 4 0
1 −1 2 1 0
3 0 1 6 0
1 1 −2 1 0
6 −1 1 3 0













→













1 0 0 1 0
0 1 0 6 0
0 0 1 3 0
0 0 0 0 0
0 0 0 0 0













(38)

then,

y1 + y4 = 0 (39)

y2 + 6y4 = 0 (40)

y3 + 3y4 = 0 (41)

then

ȳ =









y1
y2
y3
y4









=









−y4
−6y4
−3y4

y4









(42)

Then, the following vectors form a basis for null(AT )























−1
−6
−3
1























(43)

Orthogonal Projections

Let W be subspace of Rn and let {ū1, · · · , ūk} be an orthogonal basis for W . For any vector v̄
in R

n, the orthogonal projection of v̄ onto W is defined as

projW (v̄) =

(

ū1 · v̄
ū1 · ū1

)

ū1 + · · ·+
(

ūk · v̄
ūk · ūk

)

ūk (44)
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The component of v̄ orthogonal to W is the vector

perpW (v̄) = v̄ − projW (v̄) (45)

The projW (v̄) can be written in terms of projections onto single vectors, i.e. one-dimensional
subspace, then

projW (v̄) = projū1
(v̄) + · · ·+ projūk

(v̄) (46)

Geometric interpretation of Theorem 5.2: As a special case of the definition of projW (v̄)
we can give a geometric interpretation to the Theorem 5.2 which states that if w̄ is in the
subspace W of Rn, which has orthogonal basis {v̄1, · · · , v̄k} then

w̄ =

(

v̄1 · w̄
v̄1 · v̄1

)

v̄1 + · · ·+
(

v̄k · w̄
v̄k · v̄k

)

v̄k (47)

= projv̄1(w̄) + · · ·+ projv̄k(w̄) (48)

Thus, w̄ is decomposed into a sum of orthogonal projections onto mutually orthogonal one-
dimensional subspaces of W .

Comment: The definition above seems to depend on the choice of orthogonal basis; that is,
a different basis {v̄′

1
, · · · , v̄′k} for W we would have a different projW (v̄) and perpW (v̄). This is

not the case.

Exercise for the student in class: Let W be the plane in R
3 with equation x− y+2z = 0

and let v̄ =





3
−1
2



. Find the orthogonal projection of v̄ onto W and the component of v̄

orthogonal to W . (this is the same subspace as the Example 5.3)

Orthogonal projection of v̄ onto W

• First we find two vectors which expand the subspace





x
y
z



 =





y − 2z
y
z



 = y





1
1
0



+ z





−2
0
1



 (49)

Then, the two vectors are

v̄1 =





1
1
0



 , v̄2 =





−2
0
1



 (50)

Since, v̄1 and v̄2 are not orthogonal we take one of them and search one orthogonal include
in the plane.

• Next we search for a vector which is orthogonal to v̄1

0 = v̄1 · v̄3 = (v̄1)
T v̄3 = [1 1 0]





x
y
z



 ⇒ x+ y = 0 (51)
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• Next we make that the found vector belong to the plane x − y + 2z = 0 by solving the
system

x+ y = 0 (52)

x− y + 2z = 0 (53)

We get y = −x, 2z = −x+ y = −2x ⇒ z = −x, then

v̄3 =





1
−1
−1



 (54)

In order to compare with the book, let us take

v̄3 =





−1
1
1



 (55)

• Now that we have the orthonormal vectors v̄1 and v̄3 we project the vector v̄ in this
orthogonal basis

proyW (v̄) =

(

v̄1 · v̄
v̄1 · v̄1

)

v̄1 +

(

v̄3 · v̄
v̄3 · v̄3

)

v̄3 (56)

with

v̄1 · v̄ = 2 (57)

v̄3 · v̄ = −2 (58)

v̄1 · v̄1 = 2 (59)

v̄3 · v̄3 = 3 (60)

then

proyW (v̄) =
2

2
v̄1 +

−2

3
v̄3 (61)

proyW (v̄) =





1
1
0



− 2

3





−1
1
1



 (62)

proyW (v̄) =





5/3
1/3
−2/3



 (63)

Component of v̄ orthogonal to W

perpW (v̄) = v̄ − proyW (v̄) =





3
−1
2



−





5/3
1/3
−2/3



 =





4/3
−4/3
8/3



 (64)
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Theorem 5.11: The Orthogonal Decomposition Theorem. Let W be a subspace of Rn

and let v̄ be a vector in R
n. Then there are unique vectors w̄ and w̄⊥ in W⊥ such that

v̄ = w̄ + w̄⊥ (65)

Proof: See book, pag. 381.

Example: from the previous example we have

v̄ = w̄ + w̄⊥ (66)

with
w̄ = projW (v̄) (67)

and
w̄⊥ = perpW (v̄) (68)

By making the sum we get

w̄ + w̄⊥ =





5/3
1/3
−2/3



+





4/3
−4/3
8/3



 =





9/3
−3/3
6/3



 =





3
−1
2



 = v̄ (69)

Theorem 5.13: If W is a subspace of Rn, then

dimW + dimW⊥ = n (70)

Proof: See book, pag. 383.

The Gram-Schmidt Process and the QR Factorization

In this section, we present a simple method for constructing an orthogonal/orthonormal basis
for any subspace of Rn.

The Gram-Schmidt Process

We want to find an orthonormal basis for a subspaceW of Rn from an arbitrary basis {x̄1, · · · , x̄k}
of W .

Motivation: Example 5.12. Let W = span(x̄1, x̄2}, where x̄1 =





1
1
0



 , x̄2 =





−2
0
1



.

Construct an orthogonal basis for W .
Let us start from x̄1 (starting from x̄2 we would get a different pair of orthogonal vectors,

Check it!!), then

• Let us define v̄1 = x̄1

• The projection of x̄2 over x̄1 is parallel to x̄1: projx̄1
(x̄2)

• Then, the orthogonal to projx̄1
(x̄2) is also orthogonal to x̄1: perpx̄1

(x̄2) = x̄2 − projx̄1
(x̄2)

10



• Then, v̄2 = perpx̄1
(x̄2) = x̄2 − projx̄1

(x̄2)

v̄2 = x̄2 −
(

x̄1 · x̄2

x̄1 · x̄1

)

x̄1 (71)

=





−2
0
1



−
(−2

2

)





1
1
0



 =





−1
1
1



 (72)

Then {v̄1, v̄2} is an orthogonal set for W . The normalized basis reads {q̄1, q̄2} with

q̄1 =
v̄1

||v̄1||
(73)

q̄2 =
v̄2

||v̄2||
(74)

where ||v̄1|| =
√
2 and ||v̄2|| =

√
3. Then

q̄i · q̄j = δij (75)

Check it!!

Theorem 5.15: The Gram-Schmidt Process. Let {v̄1, · · · , v̄k} be a basis for a subspace
W of Rn and define the following:

v̄1 = x̄1 W1 = span(x̄1)

v̄2 = x̄2 −
(

v̄1·x̄2

v̄1·v̄1

)

v̄1 W2 = span(x̄1, x̄2)
...

v̄k = x̄k −
(

v̄1·x̄k

v̄1·v̄1

)

v̄1 − · · · −
(

v̄k−1·x̄k

v̄k−1·v̄k−1

)

v̄k−1 Wk = span(x̄1, · · · , x̄k)

(76)

Then for each i = 1, · · · , k, {v̄1, · · · , v̄i} is an orthogonal basis forWi. In particular, {v̄1, · · · , v̄k}
is an orthogonal basis for W .
Proff: See book, pag. 387.

Comments related to Theorem 5.15

• The theorem states that every subspace of Rn has an orthogonal basis and it gives an
algorithm for constructing such a basis.

• If we require an orthonormal basis we normalize the orthogonal vectors produced by the
Gram-Schmidt Process. That is, for each i, we replace v̄i by the unit vector q̄i = v̄i/||v̄i||.

Exercise for the student in class (Example 5.13): Apply the Gram-Schmidt Process
(starting from x̄1) to construct an orthonormal basis for the subspace W = span(x̄1, x̄2, x̄3) of
R

4, where

x̄1 =









1
−1
−1
1









, x̄2 =









2
1
0
1









, x̄3 =









2
2
1
2









(77)

11



Solution:

• First we must check that x̄1, x̄2, x̄3 are LI. In this case they are LI.

• If They are not, we through away any of LD vectors.

• Next we apply the GS procedure. We should get

v̄1 = x̄1 (78)

v̄2 = x̄2 −
(

v̄1 · x̄2

v̄1 · v̄1

)

v̄1 =









3/2
3/2
1/2
1/2









(79)

Let us use a scale v̄′
2
= 2v̄2

v̄3 = x̄3 −
(

v̄1 · x̄3

v̄1 · v̄1

)

v̄1 −
(

v̄′
2
· x̄3

v̄′
2
· v̄′

2

)

v̄′
2
=









−1/2
0
1/2
1









(80)

Let us use a scale v̄′
3
= 2v̄3.

Then, an orthogonal basis for W is {v̄1, v̄′2, v̄′3}.

• Finally we normalize the basis vectors. We should get

q̄1 =
v̄1

||v̄1||
=









1/2
−1/2
−1/2
1/2









(81)

q̄2 =
v̄′
2

||v̄′
2
|| =









3
√
5/10

3
√
5/10√
5/10√
5/10









(82)

q̄3 =
v̄′
3

||v̄′
3
|| =









−
√
6/6
0√
6/6√
6/3









(83)

The QR Factorization

If A is an m × n (m ≥ n) matrix with linearly independent columns āi, with i = 1, · · · , n,
then applying the Gram-Schmidt Process to theses columns yields orthonormal vectors q̄i, with
i = 1, · · · , n. From Theorem 5.15, for each i = 1, · · · , n,

Wi = span(ā1, · · · , āi) = span(q̄1, · · · , q̄i) (84)

Therefore, there are scalars r1i, · · · , rii such that

āi = r1iq̄1 + · · ·+ riiq̄i (85)
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for each i = 1, · · · , n. That is,

ā1 = r11q̄1 (86)

ā2 = r12q̄1 + r22q̄2 (87)
... (88)

ān = r1nq̄1 + · · ·+ rnnq̄n (89)

in matrix form it read,

A = [ā1 · · · ān] = [q̄1 · · · q̄n]











r11 r12 · · · r1n
0 r22 · · · r2n
...

...
. . .

...
0 0 · · · rnn











= QR (90)

where Q is a matrix m× n which has orthonormal columns

Q = [q̄1|q̄2| · · · |q̄n] (91)

and R is an invertible (see Exercise 23, pag. 392 in the book) upper triangular matrix n × n
with non zero diagonal entries,

R =











r11 r12 · · · r1n
0 r22 · · · r2n
...

...
. . .

...
0 0 · · · rnn











(92)

Theorem 5.16: The QR Factorization. Let A be an m × n matrix with linearly inde-
pendent columns. Then A can be factored as A = QR, where Q is an m × n matrix with
orthonormal columns and R is an invertible upper triangular matrix.

Exercise for the student in class (Example 5.15): Find a QR factorization of

A =









1 2 2
−1 1 2
−1 0 1
1 1 2









(93)

Solution:

• First we identify the columns of A with vector

x̄1 =









1
−1
−1
1









, x̄2 =









2
1
0
1









, x̄3 =









2
2
1
2









(94)

• Next we check if the are LI

13



• Next we orthonormalized these vectors. I was done in the previous example:

q̄1 =
v̄1

||v̄1||
=









1/2
−1/2
−1/2
1/2









(95)

q̄2 =
v̄′
2

||v̄′
2
|| =









3
√
5/10

3
√
5/10√
5/10√
5/10









(96)

q̄3 =
v̄′
3

||v̄′
3
|| =









−
√
6/6
0√
6/6√
6/3









(97)

• Next, we build the matrix Q with these orthonormal vectors.

Q = [q̄1|q̄2|q̄3] (98)

=









1/2 3
√
5/10 −

√
6/6

−1/2 3
√
5/10 0

−1/2
√
5/10

√
6/6

1/2
√
5/10

√
6/6









(99)

• Finally, we calculate the R matrix from

A = QR ⇒ QTA = R (100)

It should gives,

R =





2 1 1/2

0
√
5 3

√
5/2

0 0
√
6/2



 (101)

Orthogonal Diagonalization of Symmetric Matrices

A square matrix with real entries will not necessarily have real eigenvalues. We also found that
not all square matrices are diagonalizable. The situation changes dramatically if we restrict
our attention to real symmetric matrices (A = AT ).

Orthogonally Diagonalizable Matrix: A square matrix A is orthogonally diagonalizable
if there exist an orthogonal matrix Q and a diagonal matrix D such that QTAQ = D.

Theorem 5.17: If A is orthogonally diagonalizable, then A is symmetric.
Proof: If A is orthogonally diagonalizable, then there exist an orthogonal matrix Q and a
diagonal matrix D such that QTAQ = D. Since Q−1 = QT , we have QTQ = I = QQT , so

QDQT = QQTAQQT = IAI = A (102)

But then
AT = (QDQT )T = QDQT = A ⇒ AT = A (103)
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Theorem 5.18: If A is a real symmetric matrix, then the eigenvalues of A are real.
Proof: See book, pag. 398.

Theorem 5.19: If A is a symmetric matrix, then any two eigenvectors corresponding to
distinct eigenvalues of A are orthogonal.
Proof: See book, pag. 399.

Theorem 5.20: The (real) Spectral Theorem. Let A be an n× n real matrix. Then A
is symmetric if and only if it is orthogonally diagonalizable.
Proof: See book, pag. 399.

Exercise for the student in class (Example 5.18): Orthogonally diagonalize the matrix

A =





1 1 1
1 2 1
1 1 2





Solution:

• First we calculate the eigenvalue from det(A− λI). We should get λ1 = 4 and λ2 = 1

• Next we calculate the eigenvectors for each eigenvalue from the homogeneous solution
(A− λiI)v̄ = 0, for i = 1, 2. We should get

E4 = span









1
1
1







 (104)

E1 = span









−1
0
1



 ,





−1
1
0







 (105)

• Since the two eigenvectors of λ = 1 are not orthogonal we apply the Gram-Schmidt
method starting from the first eigenvector. We should get





−1/2
1

−1/2



 (106)

• Next we normalized the three orthogonal eigenvectors and build the orthogonal matrix
Q. We should get

Q =





1/
√
3 −1/

√
2 −1/

√
6

1/
√
3 0 2/

√
6

1/
√
3 1/

√
2 −1/

√
6



 (107)

• Finally we make the matrix products. We should get

QTAQ =





4 0 0
0 1 0
0 0 1



 (108)

which is the usual matrix D build from the eigenvalues!.
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Spectral Decomposition. The Spectral Theorem allows us to write a real symmetric matrix
A in the form

A = QDQT (109)

where Q is orthogonal form by the eigenvectors of A as columns and D is diagonal form by the
eigenvalues of A in the same order as the eigenvectors in Q,

A = QDQT (110)

= [q̄1 · · · q̄n]







λ1 · · · 0
...

. . .
...

0 · · · λn













q̄T
1

...
q̄Tn






(111)

= [λ1q̄1 · · · λnq̄n]







q̄T
1

...
q̄Tn






(112)

= λ1q̄1q̄
T
1
+ · · ·+ λnq̄nq̄

T
n (113)

This is called the spectral decomposition of A. Each of the terms λiq̄iq̄
T
i is a rank 1 matrix, by

Exercise 56 in Section 3.5, and q̄iq̄
T
i is the matrix of the projection onto the subspace spanned

by q̄i. (See Exercise 25, pag. 405). For this reason, the spectral decomposition

A = λ1q̄1q̄
T
1
+ · · ·+ λnq̄nq̄

T
n (114)

is sometimes referred to as the projection form of the Spectral Theorem.

Application: Example 5.20. Find a 2 × 2 matrix with eigenvalues λ1 = 3 and λ2 = −2
and corresponding eigenvalues

v̄1 =

[

3
4

]

, v̄2 =

[

−4
3

]

(115)

Solution

• Firs we normalized the eigenvectors

q̄1 =

[

3/5
4/5

]

, q̄2 =

[

−4/5
3/5

]

(116)

• Next we compute q̄iq̄
T
i for i = 1, 2. We should get

q̄1q̄
T
1

=

[

9/25 12/25
12/25 16/25

]

(117)

q̄2q̄
T
2

=

[

16/25 −12/25
−12/25 9/25

]

(118)

• Finally we compute the matrix A in its spectral decomposition. We should get

A = λ1q̄1q̄
T
1
+ λ2q̄2q̄

T
2

(119)

=

[

−1/5 12/5
12/5 6/5

]

(120)
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Applications

Quadratic Forms

A quadratic from is x, y (and z) is a sum of terms, each of which has total degree two in the
variables, i.e. ax2 + by2(+cz2) + dxy(+exz + fyz) in 2 (or 3) variables.

Quadratic forms can be represented using matrices

ax2 + by2 + cxy = [x y]

[

a c/2
c/2 b

] [

x
y

]

(121)

and

ax2 + by2 + cz2 + dxy + exz + fyz = [x y z]





a d/2 e/2
d/2 b f/2
e/2 f/2 c









x
y
z



 (122)

Quadratic Form and its associated matrix: A quadratic form in n variables is a function
f : Rn → R of the form

f(x̄) = x̄TAx̄ (123)

where A is a symmetric n × n matrix and x̄ is in R
n. We refer to A as the matrix associated

with f .

Quadratic Form Expansion: We can expand a quadratic form in n variables x̄TAx̄ as
follows:

x̄TAx̄ =
n

∑

i=1

aiix
2

i +
n

∑

i<j

2aijxixj (124)

About diagonalizing the associated matrix: In general, the matrix of a quadratic form
is a symmetric matrix and that such matrices can always be diagonalized. We will now use this
fact to show that, for every quadratic from, we can eliminate the cross-product terms by means
of a suitable change of variable. Let f(x̄) = x̄TAx̄ be a quadratic form in n variables, with A
a symmetric n × n matrix. By the Spectral Theorem, there is an orthogonal matrix Q that
diagonalizes A; that is, QTAQ = D, where D is the diagonal matrix displaying the eigenvalues
of A. We now set

x̄ = Qȳ ⇒ ȳ = Q−1x̄ = QT x̄ (125)

Then

x̄TAx̄ = (Qȳ)TA(Qȳ) (126)

= ȳTQTAQȳ (127)

= ȳTDȳ (128)

= λ1y
2

1
+ · · ·+ λny

2

n (129)

=
n

∑

i=1

λiy
2

i (130)

This process is called diagonalizing a quadratic form.
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Theorem 5.23: The Principal Axes Theorem. Every quadratic form can be diagonalized.
Specifically, if A is the n× n symmetric matrix associated with the quadratic form x̄TAx̄ and
if Q is an orthogonal matrix such that QTAQ = D is a diagonal matrix, then the change of
variable x̄ = Qȳ transform the quadratic form x̄TAx̄ into the quadratic form ȳTDȳ, which has
no cross-product terms. If the eigenvalues of A are λ1, · · · , λn and ȳ = [y1 · · · yn]T , then

x̄TAx̄ = ȳTDȳ = λ1y
2

1
+ · · ·+ λny

2

n (131)

Classification of the quadratic forms: A quadratic form f(x̄) = x̄TAx̄ is classified as one
of the following:

1. positive defined if f(x̄) > 0 for all x̄ 6= 0.

2. positive semidefined if f(x̄) ≥ 0 for all x̄.

3. negative defined if f(x̄) < 0 for all x̄ 6= 0.

4. negative semidefined if f(x̄) ≤ 0 for all x̄.

5. indefinite if f(x̄) takes on both positive and negative values.

Classification of symmetric matrices: A symmetric matrix A is called positive defined,
positive semidefined, negative define, negative semidefined, or indefinite if the associated quadratic
form f(x̄) = x̄TAx̄ has the corresponding property.

Theorem 5.24: Let A be an n× n symmetric matrix. The quadratic form f(x̄) = x̄TAx̄ is

a. positive definite if and only if all of the eigenvalues of A are positive.

b. positive semidefinite if and only if all of the eigenvalues of A are nonnegative.

c. negative definite if and only if all of the eigenvalues of A are negative.

d. negative semidefinite if and only if all of the eigenvalues of A are nonpositive.

e. indefinite if and only if A has both positive and negative eigenvalues.

Theorem 5.25: Let f(x̄) = x̄TAx̄ be a quadratic form with associated n × n symmetric
matrix A. Let the eigenvalues of A be λ1 ≥ λ2 ≥ · · · ≥ λn. Then the following are true, subject
to the constrain ||x̄|| = 1:

a. λ1 ≥ f(x̄) ≥ λn

b. The maximum value of f(x̄) is λ1, and it occurs when x̄ is a unit eigenvector corresponding
to λ1

c. The minimum value of f(x̄) is λn, and it occurs when x̄ is a unit eigenvector corresponding
to λn
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Graphing Quadratic Equations

Conic sections

The general form of a quadratic equation in two variables is

ax2 + by2 + cxy + dx+ ey + f = 0 (132)

where at least one of a, b, and c is nonzero. The graphs of such quadratic equations are
called conic sections. They can be obtain by taking cross sections of a double cone. The most
important of the conic sections are the ellipses (with circles as a special case), hyperbolas, and
parabolas. These are called nondegenerate conic. It is also possible for a cross section of a cone
to result in a single point, a straight line, or a pair of lines. These are called degenerate conics.

The graph of a nondegenerate conic is said to be in standard position relative to the coor-
dinate axes if its equation can be expressed in one of the following forms:

• Ellipse or circle: x2

a2
+ y2

b2
= 1; a, b > 0

• Hyperbola: x2

a2
− y2

b2
= 1; a, b > 0 or −x2

a2
+ y2

b2
= 1; a, b > 0

• Parabola: y = ax2, a ≷ 0, x = ay2, a ≷ 0.

Other cases

• If a quadratic equation contains too many terms to be written in one of the above forms,
then its graph is not in standard position. When there are additional terms but no xy
term, the graphs of the conic has been translated out of standard position. It can be
identify by completing the squares.

• If a quadratic equation contains a cross-product term, then it represents a conic that has
been rotated.

Quadratic surface

The general form of a quadratic equation in three variables is

ax2 + by2 + cz2 + dxy + exz + fyz + gx+ hy + iz + j = 0 (133)

where at least one of a, b, · · · , f is nonzero. The graphs of such quadratic equation is called a
quadratic surface.

Some quadratic in standard position are

• Ellipsoid: x2

a2
+ y2

b2
+ z2

c2
= 1

• Hyperboloid: x2

a2
+ y2

b2
− z2

c2
= 1

• Hyperboloid of two sheets: x2

a2
+ y2

b2
− z2

c2
= −1

• Elliptic cone: z2 = x2

a2
+ y2

b2

• Elliptic paraboloid: z = x2

a2
+ y2

b2

• Hyperbolic paraboloid: z = x2

a2
− y2

b2

A quadratic graph that have been translated out of standard position can be identify using
the complete-the-squares method.
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