
Funciones anaĺıticas

Credit: This notes are 100% from chapter 3 of the book entitled A First Course in Complex

Analysis with Applications by Dennis G. Zill and Patrick D. Shanahan. Jones and Bartlett
Publishers. 2003.

Differentiability and Analyticity

Derivative of Complex Function Suppose the complex function f is defined in a neigh-
borhood of a point z0. The derivative of f at z0, denoted by f ′(z0), is

f ′(z0) = lim
∆z→0

f(z0 +∆z)− f(z0)

∆z
(1)

provided this limit exists.
If the above limit exists, then the function f is said to be differentiable at z0.

Rules of Differentiation If f and g are differentiable at a point z, and c is a complex
constant, then

Constant Rules: d
dz
c = 0 and d

dz
cf(z) = cf ′(z)

Sum Rule: d
dz
[f(z)± g(z)] = f ′(z)± g′(z)

Product Rule: d
dz
[f(z)g(z)] = f(z)g′(z) + f ′(z)g(z)

Quotient Rule: d
dz

[

f(z)
g(z)

]

= f ′(z)g(z)−f(z)g′(z)
[g(z)]2

Chain Rule: d
dz
f(g((z)) = f ′(g(z))g′(z)

Power Rule: d
dz
zn = nzn−1

Power Rule for functions: d
dz
[g(z)]n = n[g(z)]n−1g′(z)

The basic ’Power Rule’ does not apply to powers of the conjugate of z because the function
f(z) = z̄ is nowhere differentiable.

Analytic Functions

Analyticity at a Point A complex function w = f(z) is said to be analytic at a point z0 if
f is differentiable at z0 and at every point in some neighborhood of z0.

Analyticity at a point is not the same as differentiability at a point. Analyticity at a point
is a neighborhood property; in other words, analyticity is a property that is defined over an
open set.
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Analyticity in a domain A function f is analytic in a domain D if it is analytic at every
point in D.

Holomorphic or regular function A function f that is analytic throughout a domain D
is called holomorphic or regular.

Entire Functions A function that is analytic at every point z in the complex plane is said
to be an entire function. In view of differentiation we can conclude that polynomial functions
are differentiable at every point z in the complex plane and rational functions are analytic
throughout any domain D that contains no points at which the denominator is zero. The
following theorem summarizes these results.

Theorem (3.1): Polynomial and Rational Functions

i. A polynomial function p(z) = anz
n + an−1z

n−1 + · · · + a1z + a0, where n is a nonnegative
integer, is an entire function.

ii. A rational function f(z) = p(z)
q(z)

, where p and q are polynomial functions, is analytic in any

domain D that contains no point z0 for which q(z0) = 0.

Singular Points A point z at which a complex function w = f(z) fails to be analytic is
called a singular point of f . For example, the rational function f(z) = 4z/(z2 − 2z + 2) is
discontinuous at 1 + i and 1− i, f fails to be analytic at these points. Thus by (ii) of Theorem
3.1, f is not analytic in any domain containing one or both of these points.

Analyticity of Sum, Product, and Quotient If the functions f and g are analytic in a
domain D then: the sum f(z)+ g(z), difference f(z)−g(z), and product f(z)g(z) are analytic.
The quotient f(z)/g(z) is analytic provided g(z) 6= 0 in D.

An Alternative Definition of f ′(z) Sometimes it is convenient to define the derivative of
a function f using

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
(2)

As in real analysis, if a function f is differentiable at a point, the function is necessarily
continuous at the point.

Theorem (3.2): Differentiability Implies Continuity If f is differentiable at a point z0
in a domain D, then f is continuous at z0.

Of course the converse of Theorem 3.2 is not true; continuity of a function f at a point does
not guarantee that f is differentiable at the point. It follows from Theorem 2.3 that the simple
function f(z) = x + 4iy is continuous everywhere because the real and imaginary parts of f ,
u(x, y) = x and v(x, y) = 4y are continuous at any point (x, y). Yet we saw in Example 3 in
the book that f(z) = x+ 4iy is not differentiable at any point z.

As another consequence of differentiability, L’Hôopital’s rule for computing limits of the
indeterminate form 0/0, carries over to complex analysis.

Theorem (3.3) L’Hôpital’s Rule Suppose f and g are functions that are analytic at a
point z0 and f(z0) = 0, g(z0) = 0, but g′(z0) 6= 0. Then

lim
z→z0

f(z)

g(z)
=

f ′(z0)

g′(z0)
(3)
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Cauchy-Riemann Equations

A function f is analytic in a domain D if f is differentiable at all points in D. We shall now
develop a test for analyticity of a complex function f(z) = u(x, y) + iv(x, y) that is based on
partial derivatives of its real and imaginary parts u and v.

Theorem (3.4): Cauchy-Riemann Equations Suppose f(z) = u(x, y)+ iv(x, y) is differ-
entiable at a point z = x+ iy. Then at z the first-order partial derivatives of u and v exist and
satisfy the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
(4)

∂u

∂y
= −

∂v

∂x
(5)

Proof: see pages 152 and 153 of the book.
If the Cauchy-Riemann equations are not satisfied at a point z, then f cannot be differen-

tiable at z. We have already seen in Example 3 of Section 3.1 of book that f(z) = x + 4iy is
not differentiable at any point z. If we identify u = x and v = 4y, then ∂u/∂x = 1, ∂v/∂y = 4,
∂u/∂y = 0, and ∂v/∂x = 0. In view of ∂u/∂x = 1 6= ∂v/∂y = 4, f is nowhere differentiable.

Criterion for Non-analyticity If the Cauchy-Riemann equations are not satisfied at every
point z in a domain D, then the function f(z) = u(x, y) + iv(x, y) cannot be analytic in D.

Theorem (3.5): Criterion for Analyticity Suppose the real functions u(x, y) and v(x, y)
are continuous and have continuous first-order partial derivatives in a domain D. If u and v
satisfy the Cauchy-Riemann equations at all points of D, then the complex function f(z) =
u(x, y) + iv(x, y) is analytic in D.

Recall that analyticity implies differentiability but not conversely. Theorem 3.5 has an
analogue that gives the following criterion for differentiability.

Sufficient Conditions for Differentiability If the real functions u(x, y) and v(x, y) are
continuous and have continuous first-order partial derivatives in some neighborhood of a point
z, and if u and v satisfy the Cauchy-Riemann equations at z, then the complex function
f(z) = u(x, y) + iv(x, y) is differentiable at z and f(z) is given by

f ′(z) =
∂u

∂x
+ i

∂v

∂x
(6)

=
∂v

∂y
− i

∂u

∂y
(7)

The following theorem is a direct consequence of the Cauchy-Riemann equations.

Theorem (3.6): Constant Functions Suppose the function f(z) = u(x, y) + iv(x, y) is
analytic in a domain D.
(i) If |f(z)| is constant in D, then so is f(z).
(ii) If f ′(z) = 0 in D, then f(z) = c in D, where c is a constant.
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Polar Coordinates

For f(z) = u(r, θ) + iv(r, θ) the Cauchy-Riemann equations become

∂u

∂r
=

1

r

∂v

∂θ
(8)

∂v

∂r
= −

1

r

∂u

∂θ
(9)

The derivative of the function f(z) in polar coordinates reads,

f ′(z) = e−iθ

(

∂u

∂r
+ i

∂v

∂r

)

(10)

=
1

r
e−iθ

(

∂v

∂θ
− i

∂u

∂θ

)

(11)

About the exponential function f(z) = ez is differentiable everywhere and f ′(z) = f(z).

Harmonic Functions

In Section 5.5 of the book you shall see that when a complex function f(z) = u(x, y)+iv(x, y) is
analytic at a point z, then all the derivatives of f : f ′(z), f ′′(z), f ′′′(z), · · · are also analytic at z.
As a consequence of this remarkable fact, we can conclude that all partial derivatives of the real
functions u(x, y) and v(x, y) are continuous at z. From the continuity of the partial derivatives
we then know that the second-order mixed partial derivatives are equal. This last fact, coupled
with the Cauchy-Riemann equations, will be used in this section to demonstrate that there is a
connection between the real and imaginary parts of an analytic function f(z) = u(x, y)+iv(x, y)
and the second-order partial differential equation

∂2φ

∂x2
+

∂2φ

∂y2
= 0 (12)

known as Laplace’s equation.

Harmonic Functions A real-valued function φ of two real variables x and y that has contin-
uous first and second-order partial derivatives in a domain D and satisfies Laplace’s equation
is said to be harmonic in D.

Theorem (3.7): Harmonic Functions Suppose the complex function f(z) = u(x, y) +
iv(x, y) is analytic in a domain D. Then the functions u(x, y) and v(x, y) are harmonic in D,
i.e.

∂2u

∂x2
+

∂2u

∂y2
= 0 (13)

∂2v

∂x2
+

∂2v

∂y2
= 0 (14)

Harmonic Conjugate Functions We have just shown that if a function f(z) = u(x, y) +
iv(x, y) is analytic in a domain D, then its real and imaginary parts u and v are necessarily
harmonic in D. Now suppose u(x, y) is a given real function that is known to be harmonic
in D. If it is possible to find another real harmonic function v(x, y) so that u and v satisfy
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the Cauchy-Riemann equations throughout the domain D, then the function v(x, y) is called a
harmonic conjugate of u(x, y). By combining the functions as u(x, y) + iv(x, y) we obtain a
function that is analytic in D.

About the invariance of Laplace’s equation under mapping There is another impor-
tant connection between analytic functions and Laplace’s equation. In applied mathematics it
is often the case that we wish to solve Laplace’s equation ∇2φ in a domain D in the xy-plane,
and for reasons that depend in a very fundamental manner on the shape of D, it simply may
not be possible to determine φ. But it may be possible to devise a special analytic mapping
f(z) = u(x, y) + iv(x, y) or u = u(x, y), v = v(x, y), from the xy-plane to the uv-plane so
that D′, the image of D, not only has a more convenient shape but the function φ(x, y) that
satisfies Laplace’s equation in D also satisfies Laplace’s equation in D′. We then solve Laplace’s
equation in D′ (the solution Φ will be a function of u and v) and then return to the xy-plane
and φ(x, y).
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