
Funciones complejas y mapeos

Credit: This notes are 100% from chapter 2 of the book entitled A First Course in Complex
Analysis with Applications by Dennis G. Zill and Patrick D. Shanahan. Jones and Bartlett
Publishers. 2003.

In this chapter it is studied the functions from a set of complex numbers to another set of
complex numbers.

Complex Functions

A complex function or a complex-valued function of a complex variable is a function f whose
domain and range are subsets of the set C of complex numbers.

Real and Imaginary Parts of a Complex Function: If w = f(z) is a complex function,
then the image of a complex number z = x + iy under f is a complex number w = u + iv =
f(x + iy) = u(x, y) + i v(x, y). The functions u(x, y) and v(x, y) are called the real and
imaginary parts of f , respectively. Example: f(z) = z2−(2+i)z ⇒ u(x, y) = x2−2x+y−y2

and v(x, y) = 2xy − x− 2y.
Comments:

• Every complex function is completely determined by the real functions u(x, y) and v(x, y).

• Complex functions defined in terms of u(x, y) and v(x, y) can always be expressed, if
desired, in terms of operations on the symbols z and z̄.

Complex exponential function: This complex function is an example of one that is defined
by specifying its real and Imaginary parts, ez = ex cos y + iex sin y.

Exponential form of a complex number: the polar form of a nonzero complex number
z = r(cos θ + i sin θ) can be written as z = reiθ, called the exponential form of the complex
number z.

Properties:

• Notice that the exponential form is not unique since θ = arg(z) is not unique.

• e0 = 1

• ez1ez2 = ez1+z2

• ez1
ez2

= ez1−z2
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• (ez1)n = enz1 for n = 0,±1,±2, · · ·

• The complex exponential function is periodic: ez+2πi = ez for all complex numbers z.

Polar coordinates: Using the polar form of z = reiθ we can write the function f(z) in its real
and imaginary parts, f(z) = u(r, θ)+ iv(r, θ). A complex function can be defined by specifying
its real and imaginary parts in polar coordinates.

Complex Functions as Mappings

The graph (z, f(z)) of a complex function lies in four-dimensional space then, we cannot use
graphs to study complex functions. Every complex function describes a correspondence between
points in two copies of the complex plane. Specifically, the point z in the z-plane is associated
with the unique point w = f(z) in the w-plane. We use the alternative term complex mapping
in place of “complex function” when considering the function as this correspondence between
points in the z-plane and points in the w-plane. The geometric representation of a complex
mapping w = f(z) consists of two figures: the first, a subset S of points in the z-plane, and
the second, the set S ′ of the images of points in S under w = f(z) in the w-plane. Then, if the
point z0 in the z-plane corresponds to the point w0 in the w-plane, that is, if w0 = f(z0), then
we say that f maps z0 onto w0 or, equivalently, that z0 is mapped onto w0 by f .

Image of S under f: If w = f(z) is a complex mapping and if S (pre-image of S ′) is a set
of points in the z-plane, then we call the set of images of the points in S under f the image
of S under f , and we denoted this set by the symbol S ′.

Exercise (Example 2): Find the image of the line x = 1 under the complex mapping w = z2

and represent the mapping graphically.
Solution:
Let C be the set of points on the vertical line x = 1, i.e z = 1 + iy, then w = z2 = (1 − y2) +
i(2y) = u+ iv. Then the image of S is the set of points w = u+ iv with

u(x, y) = 1− y2 (1)

v(x, y) = 2y (2)

⇒ u = 1− v2

4
(3)

since −∞ < y < ∞ ⇒ −∞ < v < ∞. Then, C ′, i.e. the image of C, is a parabola in the
w-plane with vertex at (1, 0), see Fig. 1

Parametric curves: If x(t) and y(t) are real-valued functions of a real variable t, then
the set C consisting of all points z(t) = x(t) + iy(t), a ≤ t ≤ b, is called a parametric
curve of a complex parametric curve. The complex valued function of the real variable t,
z(t) = x(t) + iy(t), is called a parametrization of C.

Line: Let us assume we want to find a parametrization of the line in the complex plane
containing the points z0 and z1. The vector z1 − z0 represent a vector originating at z0 and
terminating at z1. If z is any point on the line containing at z0 and z1, then the vector z − z0
is a real multiple of the vector z1 − z0. Therefore, if z is on the line containing z0 and z1, then
there is a real number t such that z − z0 = t(z1 − z0). Solving this equation for z gives a
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Figure 1: w = z2 = (1− y2) + i(2y) = u+ iv (from the book)

parametrization z(t) = z0 + t(z1 − z0) = z0(1 − t) + z1t. Then, a parametrization of the line
containing the points z0 and z1 is

z(t) = z0(1− t) + z1t (4)

with −∞ < t < ∞ (for t ∈ [0, 1], z ∈ [z0, z1]).

Circle: A parametrization of the circle centered at z0 with radius r is

z(t) = z0 + r(cos t+ i sin t) (5)

= z0 + reit (6)

with 0 ≤ t ≤ 2π (0 ≤ t ≤ π gives a semicircular arc).

Image of a Parametric Curve under a Complex Mapping: If w = f(z) is a complex
mapping and if C is a curve parametrized by z(t), a ≤ t ≤ b, then

w(t) = f(z(t)), (7)

with a ≤ t ≤ b is a parametrization of the image, C ′ of C under w = f(z).

Example: Image of the semicircle center at zero of r = 2 contained in C under the mapping
w = z2.
The points z ∈ C can be parametrized by z = 2eit with 0 ≤ t ≤ π, then, the points w ∈ C ′

verify w(t) = (2eit)2 = 4e2it with 0 ≤ t ≤ π, i.e. a circle of radius r′ = 4, since for s = 2t,
w(s) = 4eis with 0 ≤ s ≤ 2π.

Linear Mappings

Every nonconstant complex linear mapping can be described as a composition of three basic
types of motions: a translation (T ), a rotation (R), and a magnification (M).
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Translations

A complex linear function T (z) = z + b with b 6= 0, is called a translation. The linear mapping
T (z) = z + b can be visualized in a single copy of the complex plane (single copy means that
both, z and w = T (z) are graph in the same complex plane) as the process of translating the
point z along the vector b with b = x0+ iy0 to the point T (z). Then, the mapping T (z) = z+ b
is also called a translation by b. A translation does not change the shape or size of a figure in
the complex plane

Example: Find the image S ′ of the square S with vertices

z1 = 1 + i (8)

z2 = 2 + i (9)

z3 = 2 + 2i (10)

z4 = 1 + 2i (11)

under the linear mapping T (z) = z + 2− i.
Solution: From T (z) = z + 2− i = z + b with b = 2− i, we get that each point on the square
S will translate by the vector (2,−1) in the complex plane. In particular the vertices will be
translate to

T (z1) = 3 (12)

T (z2) = 4 (13)

T (z3) = 4 + i (14)

T (z4) = 3 + i (15)

Rotation

A complex linear function
R(z) = az (16)

with |a| = 1 is called a rotation. Written in polar we get

R(z) = eiθreiφ = rei(θ+φ) (17)

Then, |R(z)| = r = |z| and arg(R(z)) = θ + φ = arg(z) + θ. Therefore, the linear mapping
R(z) = az can be visualized in a single copy of the complex plane as the process of rotating
the point z counterclockwise through an angle of θ radians about the origin to the point R(z).
If Arg(a) < 0, then the linear mapping R(z) = az can be visualized in a single copy of the
complex plane as the process of rotating points clockwise through an angle of θ radians about
the origin. For this reason the angle θ = Arg(a) is called an angle of rotation of R.

Example: Find the image of C, where C is the real axis y = 0 under the linear mapping

R(z) = az =

(√
2

2
+

√
2

2
i

)

z

The modulus and principal argument of a are

|a| =

∣

∣

∣

∣

∣

√
2

2
+

√
2

2
i

∣

∣

∣

∣

∣

=
2

4
+

2

4
= 1 (18)

Arg(a) = tan−1

( √
2
2√
2
2

)

= tan−1(1) =
π

4
(19)
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Magnifications

A complex function
M(z) = az

with a > 0 (with a ∈ R) is called a magnification,

M(z) = az = (ax) + i(ay) (20)

= (ar)eiθ (21)

then

|M(z)| = |a||z| (22)

arg(M(z)) = arg(z) (23)

Thus, the linear mapping M(z) = az can be visualized in a single copy of the complex plane
as the process of magnifying, for a > 1 the modulus of the point z by a factor of a to obtain
the point M(z). The real number a is called the magnification factor of M . If 0 < a < 1,
then the point M(z) is a times closer to the origin than the point z. This special case of a
magnification is called a contraction.

A magnification mapping will change the size of a figure but, it will not change its basic
shape.

Example: Image of the circle C given by |z| = 2 under the linear mapping M(z) = 3z.
Solution: Each point in the image C ′ will have modulus |M(z)| = |3z| = 6. The image points
can have any argument since the points z in the circle C can have any argument. Therefore,
the image C ′ is the circle |w| = 6 that is centered at the origin and has radius 6.

Linear Mappings

A general linear mapping f(z) = az + b is a composition of a rotation, a magnification, and a
translation.

Image of a Point under a Linear Mapping: Let us suppose that

f(z) = az + b = |a|
(

a

|a|z
)

+ b

is a complex linear function with a 6= 0 and z0 be a point in the complex plane. If the point
w0 = f(z0) is plotted in the same copy of the complex plane as z0, then w0 is the point obtained
by

1. the term a/|a| rotates z0 an angle Arg(a) about the origin,

2. the term |a| is a magnification with magnification factor |a|, and

3. the term b translates the result by b.

This description also describes the image of any set of points S. In particular, the image,
S ′, of a set S under f(z) = az + b is the set of points obtained by rotating S through Arg(a),
magnifying by |a|, and then translating by b.

From f(z) = |a|(a/|a|)z + b we see that every nonconstant complex linear mapping is a
composition of at most one rotation, one magnification, and one translation. Then, if a 6= 0 is
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a complex number, R(z) is a rotation through Arg(a), M(z) is a magnification by |a|, and T (z)
is a translation by b, then the composition f(z) = (T ◦M ◦R)(z) = T (M(R(z))) is a complex
linear function.

Since the composition of any finite number of linear functions is again a linear function, it
follows that the composition of finitely many rotations, magnifications, and translations is a
linear mapping.

A linear mapping f(z) = az + b with a 6= 0 can distort the size of a figure in the complex
plane, but it preserve the basic shape of a figure.

The order of the composition is important (in some special cases the changing the order
does not change the mapping, see problems 27 and 28 in the book). Example where the result
change: consider the mapping f(z) = 2z + i, which magnifies by 2, then translates by i; so,
f(0) = i. If we reverse the order of composition, that is, if we translate by i, then magnify by
2 the effect is 0 maps onto 2i!!.

A complex linear mapping can always be represented as a composition in more than one way.
The complex mapping f(z) = 2z + i, for example, can also be expressed as f(z) = 2(z + i/2).

Example: Find the image of the rectangle with vertices

• −1 + i,

• 1 + i,

• 1 + 2i,

• −1 + 2i

under the linear mapping f(z) = 4iz + 2 + 3i.
Solution 1: Let S be the rectangle with the above vertices and let S ′ denote the image of S
under f . Because f is a linear mapping, our foregoing discussion implies that S ′ has the same
shape as S. That is, S ′ is also a rectangle with vertices

• f(−1 + i) = −2− i,

• f(1 + i) = −2 + 7i,

• f(1 + 2i) = −6 + 7i,

• f(−1 + 2i) = −6− i.

Solution 2: The linear mapping f can also be viewed as a composition of a

• rotation Arg(4i) = π/2

• magnification |4i| = 4

• translation 2 + 3i

see Fig. 2.
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Figure 2: Linear mapping f(z) = 4iz + 2 + 3i (from the book)

Special Power Functions

A complex polynomial function is a function of the form p(z) = anz
n + an−1z

n−1 + · · ·+
a1z + a0 where n is a positive integer and an, an−1, · · · , a1, a0 are complex constants. In this
section we study complex polynomials of the form f(z) = zn, n ≥ 2. The mappings w = zn,
with n ≥ 2, do not preserve the basic shape of every figure in the complex plane. Associated
to the function zn, n ≥ 2, we also have the principal nth root function z1/n. The principal
nth root functions are inverse functions of the functions zn defined on a sufficiently restricted
domain.

Power Functions A complex power function is a function of the form f(z) = zα where α
is a complex constant. In this section we will restrict our attention to special complex power
functions of the form zn and z1/n where n ≥ 2 and n is an integer.

The function zn

The function z2: The values of f(z) = z2 are found using complex multiplication. For
example, at z = 2 − i, we get f(2− i) = (2− i)2 = (2− i)(2− i) = 3− 4i. Understanding the
complex mapping w = z2, requires a little more work. We begin by expressing this mapping
in exponential notation by replacing the symbol z with reiθ: w = z2 = (reiθ)2 = r2ei2θ. Then,
|w| = r2 and arg(w) = 2θ = 2arg(z), see Fig. 3.

Mapping R
+ by z2: The squaring function z2 maps a semicircle |z| = r, −π/2 ≤ arg(z) ≤

π/2, onto a circle |w| = r2, −π ≤ arg(w) ≤ π. Then, since the right half-plane Re(z) ≥ 0
consists of the collection of semicircles |z| = r, −π/2 ≤ arg(z) ≤ π/2, with r ∈ [0,∞), we have
that the image of this half-plane consists of the collection of circles |w| = r2 where r takes on
any value in [0,∞). This implies that w = z2 maps the right half-plane Re(z) ≥ 0 onto the
entire complex plane.

Mapping a triangle by z2: Let us find the image of the triangle S with vertices

• z1 = 0
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Figure 3: The mapping w = z2 (from the book)

• z2 = 1 + i

• z3 = 1− i

Solution: Let us denote S ′ the image of S under w = z2. Each of the three sides of S will be
treated separately.

1. The side of z1 − z2 lies on a ray emanating from the origin and making an angle of π/4
with the positive x-axis. The image of this segment must lie on a ray making an angle
of 2(π/4) = π/2 with the positive u-axis. Since the module of the points on the edge
containing 0 and 1 + i vary from 0 to 2, the moduli of the images of these points vary
from 02 = 0 to (

√
2)2 = 2. Thus, the image of z1 − z2 is a vertical line segment from 0 to

2i.

2. In a similar manner, the image of the side of S containing the vertices z1 = 0 and z3 = 1−i
is a vertical line segment from 0 to −2i.

3. The remaining side of S contains the vertices z3 = 1 − i and z2 = 1 + i consists of the
set of points z = 1 + iy, −1 ≤ y ≤ 1. Because this side is contained in the vertical line
x = 1, it follows from a previous example that its image is a parabolic segment given by
u = 1− v2/4, −2 ≤ v ≤ 2 or v = ±2

√
1− u, 1 ≤ u ≤ 0.

The function zn, n > 2: If z and w = zn are plotted in the same copy of the complex plane,
then this mapping can be visualized as the process of magnifying or contracting the modulus r
of z = reiθ to the modulus rn of w, and by rotating z about the origin to increase an argument
θ of z to an argument nθ of w,

w = zn = rneinθ

.

8



The power function z1/n

The n roots of a nonzero complex number

z = reiθ = r(cos θ + i sin θ)

are given by:

n

√
rei(θ+2kπ)/n = n

√
r

(

cos
θ + 2kπ

n
+ i sin

θ + 2kπ

n

)

where k = 0, 1, 2, · · · , n− 1.

Principal Square Root Function z1/2: For n = 2, the two roots of a nonzero complex
number

√
rei(θ+2kπ)/2 =

√
r

(

cos
θ + 2kπ

2
+ i sin

θ + 2kπ

2

)

where k = 0, 1.
This equation does not define a function because it assigns two complex numbers (one for

k = 0 and one for k = 1) to the complex number z. By setting θ = Arg(z) and k = 0 we
can define a function that assigns to z the unique square root called principal square root
function, given by

z1/2 =
√

|z|eiArg(z)/2

If we set θ = Arg(z) and replace z with reiθ in z1/2 =
√

|z|eiArg(z)/2 we get z1/2 =
√
reiθ/2.

Examples: The following are the principal square root z1/2 for

• z = 4 ⇒ z1/2 =
√

|z|eiArg(z)/2 =
√
4ei0/2 = 2

• z = −2i ⇒ z1/2 =
√

|z|eiArg(z)/2 =
√
2ei(−π/2)/2 =

√
2e−iπ/4 = 1− i

• z = −1 + i ⇒ |z| =
√
2, tan θ = 1/(−1) = −1 ⇒ θ = 3π/4, then z1/2 =

√

|z|eiArg(z)/2 =
√√

2ei(3π/4)/2 = 4
√
2ei3π/8

• z = i ⇒ i1/2 =
√
1ei(π/2)/2 = eiπ/4 =

√
2
2
+ i

√
2
2
.

Inverse Function

One-to-one: A complex function f is one-to-one if each point w in the range of f is the image
of a unique point z, called the pre-image of w, in the domain of f . That is, f is one-to-one if
whenever f(z1) = f(z2), then z1 = z2. This says that a one-to-one complex function will not
map distinct points in the z-plane onto the same point in the w-plane. If f is a one-to-one
complex function, then for any point w in the range of f there is a unique pre-image in the
z-plane, which we denote by f−1(w). This correspondence between a point w and its pre-image
f−1(w) defines the inverse function of a one-to-one complex function.

Inverse Function: If f is a one-to-one complex function with domain A and range B, then
the inverse function of f , denoted by f−1, is the function with domain B and range A defined
by f−1(z) = w if f(w) = z.

Then, if a set S is mapped onto a set S ′ by a one-to-one function f , then f−1 maps S ′ onto
S. In other words, the complex mappings f and f−1 ’undo’ each other. It also follows that if
f has an inverse function, then f(f−1(z)) = z and f−1(f(z)) = z.
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Example: inverse function of z2 Inverse Functions of zn, n ≥ 2 is not well defined since
it is not one-to-one. In order to see that this is so, consider the points z1 = reiθ and z2 =
rei(θ+2π/n) with r 6= 0. Because n ≥ 2, the points z1 and z2 are distinct but f(z1) = rneinθ and
f(z2) = rnei(nθ+2π) = rneinθei2π = rneinθ = f(z1).

For n = 2 the function f(z) = z2 is a one-to-one function on the set A defined by −π/2 <
Arg(z) ≤ π/2. It follows that this function has a well-defined inverse function f−1. This inverse
function is the principal square root function z1/2.

Remember: the principal argument Arg(z) of a complex number z lies −π < Arg(z) ≤ π
Let z = reiθ and f−1 = w = ρeiφ where θ = Arg(z) (−π < Arg(z) ≤ π) and φ = Arg(w).

Since the range of f−1 = z1/2 is the domain of f = z2, then −π/2 < φ ≤ π/2 and ρ =
√
r (ver

figure 4), then
z1/2 =

√
reiθ/2 (24)

Figure 4: The principal square root function w = z1/2 (from the book)

The Mapping w = z1/2 As a mapping, the function z2 squares the modulus of a point and
doubles its argument. Because the principal square root function z1/2 is an inverse function of z2,
it follows that the mapping w = z1/2 takes the square root of the modulus of a point and halves
its principal argument. That is, if w = z1/2, then we have |w| =

√

|z| and Arg(w) = 1
2
Arg(z).

Principal nth Root Function

By modifying the argument given for the function f(z) = z2 is one-to-one on the set defined
by −π/2 < arg(z) ≤ π/2, it can be show that the complex power function f(z) = zn, n > 2, is
one-to-one on the set defined by

−π

n
< arg(z) ≤ π

n
(25)

The image of the set defined by above under the mapping w = zn is the entire complex
plane C excluding w = 0. Therefore, there is a well-defined inverse function for f . Analogous
to the case n = 2, this inverse function of zn is called the principal nth root function z1/n.
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The domain of z1/n is the set of all nonzero complex numbers, and the range of z1/n is the set
of complex numbers w satisfying −π/n < arg(z) ≤ π/n,

z1/n = n

√

|z|eiArg(z)/n = n

√

|z|eiθ/n (26)

with θ = Arg(z).

Multiple-Valued Functions

A nonzero complex number z has n distinct nth roots in the complex plane. This means that
the process of ”taking the nth root” of a complex number z does not define a complex function
because it assigns a set of n complex numbers to the complex number z. These types of
operations on complex numbers are examples of multiple-valued functions. We will adopt
the following functional notation for multiple-valued functions: (i) when representing multiple-
valued functions with functional notation, we will use uppercase letters such as F (z) = z1/2 or
G(z) = arg(z); (2) lower-case letters such as f and g will be reserved to represent functions,
for example, f(z) = z1/2 refers to the principal square root function.

The visualization of multiple-to-one a complex mapping like z2 is the Riemann surface.
See Fig. 5 (it seems that the cut in the Riemann surface is in R+ while the mapping has the
cut at R−.)

Reciprocal Function

We define a complex rational function to be a function of the form f(z) = p(z)/q(z) where
both p(z) and q(z) are complex polynomial functions. In this section, we study the most basic
complex rational function, the reciprocal function 1/z, as a mapping of the complex plane. An
important property of the reciprocal mapping is that it maps certain lines onto circles.

The function 1/z, whose domain is the set of all nonzero complex numbers, is called the
reciprocal function,

w =
1

z
=

1

reiθ
=

1

r
e−iθ (27)

therefore, the reciprocal function maps a point in the z-plane with polar coordinates (r, θ) onto
a point in the w-plane with polar coordinates (1/r,−θ), see Fig. 6

Inversion in the Unit Circle The function

g(z) =
1

r
eiθ

whose domain is the set of all nonzero complex numbers, is called inversion in the unit circle.
We will describe this mapping by considering separately

1. the images of points on the unit circle,

2. the points outside the unit circle, and

3. the points inside the unit circle.

(1) Consider first a point z on the unit circle. Since z = 1eiθ, then g(z) = eiθ = z. Therefore,
each point on the unit circle is mapped onto itself by g.
(2) If z is a nonzero complex number that does not lie on the unit circle, then we can write z as
z = reiθ with r 6= 1. When r > 1 (z is outside of the unit circle), we have that |g(z)| = 1/r < 1.
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Figure 5: Two mapping for w = z2 and a Riemann surface for the one-to-one valued function
f(z) = z2 (from the book)

So, the image under g of a point z outside the unit circle is a point inside the unit circle.
(3) Conversely, if r < 1, then |g(z)| = 1/r > 1, and we conclude that if z is inside the unit
circle, then its image under g is outside the unit circle.
See Fig. 7
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Figure 6: The reciprocal mapping for w = 1/z (from the book).

Figure 7: Inversion in the unit circle g(z) = 1
r
eiθ (from the book).

Complex Conjugation

The second complex mapping that is helpful for describing the reciprocal mapping is a reflection
across the real axis. Under this mapping the image of the point (x, y) is (x,−y), c(z) = z̄,
called complex conjugation function,

c(z) = c(x+ iy) = x− iy (28)

c(z) = c(reiθ) = re−iθ (29)

Reciprocal Mapping

The reciprocal function f(z) = 1/z can be written as the composition of inversion in the unit
circle and complex conjugation. Using the exponential forms c(z) = re−iθ and g(z) = eiθ/r of
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these functions we find that the composition c ◦ g is given by:

c(g(z)) = c

(

1

r
eiθ
)

=
1

r
e−iθ

Then c(g(z)) = f(z) = 1/z. This implies that, as a mapping, the reciprocal function first
inverts in the unit circle, then reflects across the real axis.

Image of a Point under the Reciprocal Mapping Let z0 be a nonzero point in the
complex plane. If the point w0 = f(z0) = 1/z0 is plotted in the same copy of the complex plane
as z0, then w0 is the point obtained by: (i) inverting z0 in the unit circle, then, (ii) reflecting
the result across the real axis.

Image of a semicircle: Let us find the image of the semicircle |z| = 2, 0 ≤ arg(z) ≤ π
under w = 1/z.
Solution: the mapping is the semicircle |w| = 1/2, −π ≤ arg(w) ≤ 0. See Fig. 8

Figure 8: Reciprocal mapping of |z| = 2, 0 ≤ arg(z) ≤ π (from the book).

Image of a line Let us find the image of the vertical line x = 1 under the reciprocal mapping
w = 1/z.
Solution: The vertical line x = 1 consists of the set of points z = 1 + iy, −∞ < y < ∞, then

w =
1

1 + iy
=

1

1 + y2
− i

y

1 + y2
= u+ iv ⇒ u2 − u+ v2 = 0 (30)

then,
(

u− 1

2

)2

+ v2 =
1

4
(31)

with u 6= 0 since v = −yu. Figure 9 shows the mapping.
Comments:

1) The above equation defines a circle centered at (1/2, 0) with radius 1/2. However, because
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Figure 9: Reciprocal mapping of x = 1 (from the book).

u 6= 0, the point (0, 0) is not in the image.
2) Using the complex variable w = u + iv, we can describe this image by |w − 1/2| = 1/2,
w 6= 0.
3) The point (0, 0) is not included because there is no point on the line x = 1 that actually
maps onto 0. In order to obtain the entire circle as the image of the line we must consider the
reciprocal function defined on the extended complex-number system.
Remember: the extended complex-number system consists of all the points in the complex plane
adjoined with the ideal point ∞
4) Points in the extended complex plane that are near the ideal point ∞ correspond to points
with extremely large modulus in the complex plane.

Reciprocal Function on the Extended Complex Plane: The reciprocal function on the
extended complex plane is the function defined by:

f(z) =







1/z z 6= 0 or z 6= ∞
∞ z = 0
0 z = ∞

(32)

Mapping Lines to Circles with w = 1/z The reciprocal function on the extended complex
plane maps:

(i) the vertical line x = k with k 6= 0 onto the circle
∣

∣

∣

∣

w − 1

2k

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2k

∣

∣

∣

∣

(33)

(ii) the horizontal line x = k with k 6= 0 onto the circle
∣

∣

∣

∣

w + i
1

2k

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2k

∣

∣

∣

∣

(34)

See Fig. 10.
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Figure 10: Reciprocal mapping of vertical and horizontal lines (from the book).

Remarks: It is easy to verify that the reciprocal function f(z) = 1/z is one-to-one. Therefore,
f has a well-defined inverse function f−1. We find a formula for the inverse function f−1(z)
by solving the equation z = f(w) for w. Clearly, this gives f−1(z) = 1/z . This observation
extends our understanding of the complex mapping w = 1/z. For example, we have seen
that the image of the line x = 1 under the reciprocal mapping is the circle |w − 1/2| = 1/2.
Since f−1(z) = 1/z = f(z) , it then follows that the image of the circle |z − 1/2| = 1/2
under the reciprocal mapping is the line u = 1. In a similar manner, we see that the circles
|w−1/(2k)| = |1/(2k)| and |w+ i/(2k)| = |1/(2k)| are mapped onto the lines x = k and y = k,
respectively.

Limits and Continuity

Remember: recall that limx→x0
f(x) = L intuitively means that values f(x) of the function f

can be made arbitrarily close to the real number L if values of x are chosen sufficiently close
to, but not equal to, the real number x0.
The concept of a complex limit is similar to that of a real limit in the sense that limz→z0 f(z) = L
will mean that the values f(z) of the complex function f can be made arbitrarily close the
complex number L if values of z are chosen sufficiently close to, but not equal to, the complex
number z0.

In this section we will define the limit of a complex function, examine some of its properties,
and introduce the concept of continuity for functions of a complex variable.

Limits

Limit of a Complex Function Suppose that a complex function f is defined in a deleted
neighborhood of z0 and suppose that L is a complex number. The limit of f as z tends to z0
exists and is equal to L, written as limz→z0 f(z) = L, if for every ε > 0 there exists a δ > 0
such that |f(z)− L| < ε whenever 0 < |z − z0| < δ. See Fig. 11
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Remember: (i) the set of points w in the complex plane satisfying |w − L| < ε is called a
neighborhood of L and (ii) the set of points satisfying the inequalities 0 < |z − z0| < δ is
called a deleted neighborhood of z0

Figure 11: The geometric meaning of a complex limit (from the book).

For limits of complex functions, z is allowed to approach z0 from any direction in the
complex plane, that is, along any curve or path through z0. In order that limz→z0 f(z) exists
and equals L, we require that f(z) approach the same complex number L along every possible
curve through z0.

Criterion for the Nonexistence of a Limit: If f approaches two complex numbers L1 6= L2

for two different curves or paths through z0, then limz→z0 f(z) does not exist.

Example: The limit limz→0 z/z̄ does not exit since,

lim
z→0

z

z̄
= lim

z→0

x+ i0

x+ i0
= lim

x→0

x

x
= 1 (35)

lim
z→0

z

z̄
= lim

z→0

0 + iy

0 + iy
= lim

y→0

iy

−iy
= −1 (36)

Remark 1: In general, computing values of limf(z) as z approaches z0 from different direc-
tions can prove that a limit does not exist, but this technique cannot be used to prove that
a limit does exist. In order to prove that a limit does exist we must use definition of limit
directly. This requires demonstrating that for every positive real number ε there is an appro-
priate choice of δ that meets the requirements of definition of limit. Such proofs are commonly
called “epsilon-delta proofs.”

Remark 2: The definition of complex limits not provide a convenient method for computing
limits. We will present a practical method for computing complex limits shortly in a theorem.
In addition to being a useful computational tool, this theorem also establishes an important
connection between the complex limit of f(z) = u(x, y) + iv(x, y) and the real limits of the
real-valued functions of two real variables u(x, y) and v(x, y).
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Limit of the Real Function F (x, y): The limit of F as (x, y) tends to (x0, y0) exists and is
equal to the real number L if for every ε > 0 there exists a δ > 0 such that |F (x, y)− L| < ε
whenever 0 <

√

(x− x0)2 + (y − y0)2 < δ.

Theorem (2.1): Real and Imaginary Parts of a Limit Suppose that f(z) = u(x, y) +
iv(x, y), z0 = x0 + iy0, and L = u0 + iv0. Then lim limz→z0 f(z) = L if and only if

lim
(x,y)→(x0,y0)

u(x, y) = u0 (37)

and

lim
(x,y)→(x0,y0)

v(x, y) = v0 (38)

Example Let us calculate the following limit: limz→1+i(z
2 + 1).

Solution: let us start separating the real and imaginary parts of (z2 + 1)

ℜ(z2 + 1) = x2 − y2 (39)

ℑ(z2 + 1) = 2xy + 1 (40)

then

lim
(x,y)→(1,1)

(x2 − y2) = 0 (41)

lim
(x,y)→(1,1)

(2xy + 1) = 3 (42)

finally
lim

z→1+i
(z2 + 1) = i3 (43)

Theorem (2.2): Properties of complex limits Suppose that f and g are complex func-
tions. If limz→z0 f(z) = L and limz→z0 g(z) = M , then

1. limz→z0 cf(z) = cL, with c a complex constant

2. limz→z0(f(z)± g(z)) = L±M

3. limz→z0 f(z)g(z) = LM

4. limz→z0
f(z)
g(z)

= L
M
, provided M 6= 0.

Exercises for the student in class: Calculates the following limits:

1. limz→i
(3+i)z4−z2+2z

z+1
= 7

2
− i1

2

2. limz→1+i
√
3
z2−2z+4
z−1−i

√
3
= i2

√
3

Continuity

Continuity of a Complex Function

A complex function f is continuous at a point z0 if

lim
z→z0

f(z) = f(z0) (44)
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Criteria for Continuity at a Point: A complex function f is continuous at a point z0 if
each of the following three conditions hold:

1. limz→z0 f(z) exits,

2. f is defined at z0, and

3. limz→z0 f(z) = f(z0).

Discontinuous at z0 If a complex function f is not continuous at a point z0 then we say
that f is discontinuous at z0. For example, the function f(z) = 1/(1 + z2) is discontinuous at
z = i and z = −i.

Example: The principal square root function f(z) = z1/2 is discontinuous at the point z0 =
−1 since the limit from upper unit circle gives i while the limit from a lower unit circle gives
−i.

Continuity in a set: A complex function f is continuous on a set S if f is continuous at z0
for each z0 in S. For example the function f(z) = z2 − iz + 2 is continuous at any point z0 in
the complex plane, while the function g(z) = 1/(z2 + 1) is continuous on the set consisting of
all complex z such that z 6= ±i.

Theorem (2.3): Real and Imaginary Parts of a Continuous Function Suppose that
f(z) = u(x, y) + iv(x, y) and z0 = x0 + iy0. Then the complex function f is continuous at the
point z0 if and only if both real functions u and v are continuous at the point (x0, y0).

Theorem (2.4): Properties of Continuous Functions: If f and g are continuous at the
point z0 , then the following functions are continuous at the point z0:
(i) cf , c a complex constant,
(ii) f ± g,
(iii) f · g, and
(iv) f/g provided g(z0) 6= 0.
(ii) and (iii) extend to any finite sum or finite product of continuous functions, respectively.
We can use these facts to show that polynomials are continuous functions.

Theorem (2.5): Continuity of Polynomial Functions Polynomial functions are contin-
uous on the entire complex plane C.

Since a rational function f(z) = p(z)/q(z) is quotient of the polynomial functions p and
q, it follows from the above two Theorems that f is continuous at every point z0 for which
q(z0) 6= 0. In other words, i.e. rational functions are continuous on their domains.

Bounded functions

Continuous complex functions have many important properties that are analogous to properties
of continuous real functions. For instance, recall that if a real function f is continuous on a
closed interval I on the real line, then f is bounded on I. This means that there is a real
number M > 0 such that |f(x)| ≤ M for all x in I. An analogous result for real functions
F (x, y) states that if F (x, y) is continuous on a closed and bounded region R of the Cartesian
plane, then there is a real number M > 0 such that |F (x, y)| ≤ M for all (x, y) in R, and we
say F is bounded on R.
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Now suppose that the function f(z) = u(x, y)+ iv(x, y) is defined on a closed and bounded
region R in the complex plane. We say that the complex f is bounded on R if there exists a
real constant M > 0 such that |f(z)| < M for all z in R. If f is continuous on R, then Theorem
2.3 tells us that u and v are continuous real functions on R. It follows that the real function
F (x, y) =

√

[u(x, y)]2 + [v(x, y)]2 is also continuous on R since the square root function is
continuous. Because F is continuous on the closed and bounded region R, we conclude that F
is bounded on R. That is, there is a real constant M > 0 such that |F (x, y)| ≤ M for all (x, y)
in R. However, since |f(z)| = F (x, y), we have that |f(z)| ≤ M for all z in R. In other words,
the complex function f is bounded on R. This establishes the following important property of
continuous complex functions.

A Bounding Property If a complex function f is continuous on a closed and bounded region
R, then f is bounded on R. That is, there is a real constant M > 0 such that |f(z)| ≤ M for
all z in R.

While this result assures us that a bound M exists for f on R, it offers no practical approach
to find it. One approach to find a bound is to use the triangle inequality. Another approach to
determine a bound is to use complex mappings.

Branches: We are usually interested in computing just one of the values of a multiple-valued
function. For example, the function F (z) = z1/n assigns to the input z the set of n roots of z.
If we make a choice such that to keep only one function, for example we keep one of the roots of
F (z) together with the concept of continuity in mind, then we obtain a function that is called
a branch of a multiple-valued function. In more rigorous terms, a branch of a multiple-valued
function F is a function f1 that is continuous on some domain and that assigns exactly one of
the multiple-values of F to each point z in that domain. The notation for the branches will be
lowercase letters with a numerical subscript such as f1, f2, and so on.

About the domain of a branch: The requirement that a branch be continuous means
that the domain of a branch is different from the domain of the multiple-valued function. For
example, the multiple-valued function F (z) = z1/2 is defined for all nonzero complex numbers
z. Even though the principal square root function f(z) = z1/2 does assign exactly one value
of F to each input z, f is not a branch of F because f is not continuous at z0 = −1. In
order to get a branch of F (z) = z1/2 we have to restrict the domain, i.e. f1(z) =

√
reiθ/2, with

−π < θ < π; it is called the principal branch of F (z) = z1/2.

Branch Cuts and Branch Points Although the multiple-valued function F (z) = z1/2 is
defined for all nonzero complex numbers C, the principal branch f1 is defined only on the
domain |z| > 0, −π < arg(z) < π. In general, a branch cut for a branch f1 of a multiple-
valued function F is a portion of a curve that is excluded from the domain of F so that f1 is
continuous on the remaining points. Therefore, the nonpositive real axis is a branch cut for the
principal branch f1 (defined above).

A different branch of F with the same branch cut is given by f2(z) =
√
reiθ/2, π < θ < 3π.

These branches are distinct because for, say, z = i we have f1(i) = 0.5
√
2 + i0.5

√
2, but

f2(i) = −0.5
√
2− i0.5

√
2. Notice that if we set φ = θ−2π, then the branch f2 =

√
rei(φ+2π)/2 =

−√
reiφ/2, −π < φ < π, then f2 = −f1.
Other branches of F (z) = z1/2 can be defined in a manner similar to the above ones by

using any ray emanating from the origin as a branch cut. For example, f3(z) =
√
reiθ/2 ,

−3π/4 < θ < 5π/4, defines a branch of F (z) = z1/2. The branch cut for f3 is the ray
arg(z) = −3π/4 together with the point z = 0.
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It is not a coincidence that the point z = 0 is on the branch cut for f1, f2, and f3. The point
z = 0 must be on the branch cut of every branch of the multiple-valued function F (z) = z1/2.
In general, a point with the property that it is on the branch cut of every branch is called a
branch point of F .

Alternatively, a branch point is a point z0 with the following property: If we traverse any
circle centered at z0 with sufficiently small radius starting at a point z1, then the values of any
branch do not return to the value at z1. For example, consider any branch of the multiple-valued
function G(z) = arg(z). At the point, say, z0 = 1, if we traverse the small circle |z − 1| = ε
counterclockwise from the point z1 = 1 − iε, then the values of the branch increase until we
reach the point 1 + iε; then the values of the branch decrease back down to the value of the
branch at z1 = 1− iε. See Figure 12. This means that the point z0 = 1 is not a branch point.

Figure 12: z = 1 is not a branch point (from the book)

On the other hand, suppose we repeat this process for the point z0 = 0. For the small circle
|z| = ε, the values of the branch increase along the entire circle. See Figures 13. By the time
we have returned to our starting point, the value of the branch is no longer the same; it has
increased by 2π. Therefore, z0 = 0 is a branch point of G(z) = arg(z).

Limits to infinite and zero: The limit of f as z tends to ∞ exists and is equal to L if for
every ε > 0 there exists a δ > 0 such that |f(z)− L| < ε whenever |z| > 1/δ.

Using this definition it is not hard to show that:

limz→∞f(z) = L (45)

if and only if

limz→0f(
1

z
) = L (46)

Infinite limit: The infinite limit

limz→z0f(z) = ∞ (47)
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Figure 13: z = 0 is a branch point (from the book)

is defined by: The limit of f as z tends to z0 is ∞ if for every ε > 0 there is a δ > 0 such that
|f(z)| > 1/ε whenever 0 < |z − z0| < δ.

From this definition we obtain the following result:

limz→z0f(z) = ∞ (48)

if and only if

limz→z0

1

f(z)
= 0 (49)

Continuous complex functions: If a complex function f is continuous on a set S, then the
image of every continuous parametric curve in S must be a continuous curve.
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