
Autovalores y autovectores

Credit: This notes are 100% from chapter 4 of the book entitled Linear Algebra. A Modern

Introduction by David Poole. Thomson. Australia. 2006.

Introduction

For a square matrix A, we ask whether there exist nonzero vectors x̄ such that Ax̄ is just a
scalar multiple of x̄. This is the eigenvalue problem, and it is one of the most central problems
in linear algebra. It has applications thorough mathematics and in many other fields as well.

Eigenvalue: Let A be an n × n matrix. A scalar λ is called an eigenvalue of A if there is a
nonzero vector x̄ such that Ax̄ = λx̄. Such a vector x̄ is called an eigenvector of A corresponding
to λ.

Geometric interpretation: In R
2, the eigenvalue equation Ax̄ = λx̄ says that the vectors

Ax̄ and x̄ are parallel. Thus, x̄ is an eigenvector of A if and only if A transforms x̄ into a parallel
vector, i.e. TA(x̄) is parallel to x̄, where TA is the matrix transformation (MT) corresponding
to A.

Example: Let us calculate the eigenvalue of A =

[

3 1
1 3

]

associate to the eigenvector x̄ =
[

1
1

]

.

We compute Ax̄,

Ax̄ =

[

3 1
1 3

] [

1
1

]

=

[

4
4

]

= 4x̄ (1)

then λ = 4.

Example 4.2: Let us calculate the eigenvectors of A =

[

1 2
4 3

]

associate to the eigenvalue

λ = 5.
From Ax̄ = λx̄ we have

(A− λI)x̄ = (A− 5I)x̄ = 0 (2)

This implies we have to compute the null space of the matrix A− 5I,

[

1 2
4 3

]

− 5

[

1 0
0 1

]

=

[

−4 2
4 −2

]

→

[

−4 2 0
4 −2 0

]

→

[

1 −1

2
0

0 0 0

]

(3)

1



then

x1 −
1

2
x2 = 0 (4)

0x1 + 0x2 = 0 (5)

Then, any vector of the form

[

t
2t

]

is an eigenvector of A with eigenvalue λ = 5 with t in R.

Eigenspace: Let A be an n × n matrix and let λ be an eigenvalue of A. The collection of
all eigenvectors corresponding to λ, together with the zero vector, is called the eigenspace of λ
and is denoted by Eλ.

Example 1: In the previous example 4.2 the eigenspace is E5 = t

[

1
2

]

Example 2 Let us verifies that λ = 6 is an eigenvalue of A =





7 1 −2
−3 3 6
2 2 2



 and find a

basis for its eigenspace.
First we calculate the null space of A− 6I

A− 6I =





1 1 −2
−3 −3 6
2 2 −4



 →





1 1 −2
0 0 0
0 0 0



 (6)

=⇒ x1 + x2 − 2x3 = 0 (7)

Then,

E6 =











−x2 + 2x3

x2

x3











=







x2





−1
1
0



+ x3





2
0
1











(8)

= span









−1
1
0



 ,





2
0
1







 (9)

Calculation of eigenvalue for 2× 2 matrices: How do we find the eigenvalue and eigen-
vector of a matrix if we do not know any of them from the very beginning?. The key is the
observation that λ is an eigenvalue of A if and only if the null space of A − λI is nontrivial.
For a two-by-two matrix we know from section 3.3 that A is invertible if and only if det(A)
is nonzero. We also know from the fundamental theorem (FT) of invertible matrices that a
matrix has a nontrivial null space if and only if it is noninvertible, hence, if and only if its
determinant is zero. Putting these facts together, we see that (for two by two matrices at least)
λ is an eigenvalue of A if and only if

det(A− λI) = 0 (10)

Application: Find all of the eigenvalues and the corresponding eigenvectos of the matrix

A =

[

3 1
1 3

]
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• First we find the zeros of det(A− λI). They are λ1 = 4, λ2 = 2.

• Next we find the null space of the matrix A − λI separately for λ1 and λ2. They are
E4 = span([1 1]T ) and E2 = span([−1 1]T ), respectively.

Exercise for the student in class: Find all of the eigenvalues and the corresponding eigen-

vectos of the matrix A =

[

4 −1
2 1

]

Solution: Pending...

Determinants

Tema visto en Álgebra II .
For any square matrix A = [aij ] of order n, the determinant is the scalar

detA = |A| =
n

∑

j=1

(−1)j+1 a1j detA1j (11)

where Aij , called the (i, j)-minor of A, is the matrix obtained by deleting the row i and column
j from A.

Example 4.8: By computing the determinant of A =





5 −3 2
1 0 2
2 −1 3



 we get: detA=5.

About the column expansion: The election of the first row is arbitrary. Any column can
be use to expand the determinant. But is an even row is used then the sing must change
consistently. For example, using the second column the definition change to

detA = |A| =

n
∑

j=1

(−1)j a2j detA2j (12)

Exercise for the student in class: Apply the above definition to the example 4.8.

Determinants of n× n Matrices

Cofactor: It is convenient to combine a minor with its plus or minus sign. To this end, we
define the (i, j)-cofactor of A to be

Cij = (−)i+j detAij (13)

Theorem 4.1: The Laplace expansion Theorem. The previous definition of the deter-
minant were done in terms of row expansion. They are also valid if we used instead column
expansion: The determinant of an n × n matrix A = [aij ], where n ≥ 2, can be computed as
(row expansion)

detA = |A| =
n

∑

j=1

aij Cij (14)
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and also as (column expansion)

detA = |A| =

n
∑

i=1

aij Cij (15)

Proof: See libro, pag. 279 (see before the Lemmas from pag. 276.)

Theorem 4.2: The determinant of a triangular matrix is the product of the entries on its
main diagonal: detA =

∑n

i=1
aii.

Example 4.12: By computing the determinant of A =













2 −3 1 0 4
0 3 2 5 7
0 0 1 6 0
0 0 0 5 2
0 0 0 0 −1













using columns

expansion (for example) we get: detA=-30. While the product of the diagonal give detA =
2× 3× 1× 5× (−1)=-30.

Properties of Determinants

Theorem 4.3: The most efficient way to compute determinants is to use row reduction. This
theorem summarizes the main properties needed in order to used row reduction effectively. Let
A = [aij ] be square matrix.

a. If A has a zero row (column), then det(A) = 0.

b. If B is obtained by interchanging two rows (columns) of A, then det(B) = −det(A).

c. If A has two identical rows (columns), then det(A) = 0.

d. If B is obtained by multiplying a row (column) of A by k, then det(B) = k det(A).

e. If A, B, and C are identical except that the ith row (column) of C is the sum of the ith
rows (columns) of A and B, then det(C) = det(A) + det(B).

f. If B is obtained by adding a multiple of one row (column) of A to another row (column),
then det(B) = det(A).

Proof: See book, page 269.

Example 4.13: Let us calculate the determinant of the matrices A and B, with

A =





2 3 −1
0 5 3

−4 −6 2



 B =









0 2 −4 5
3 0 −3 6
2 4 5 7
5 −1 −3 1









(16)

We should get: det(A) = 0 and det(B) = 585.

Determinants of Elementary Matrices

Recalled that an elementary matrix results from performing an elementary row operation on
an identity matrix. Setting A = In in Theorem 4.3 yields the following theorem.
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Theorem 4.4: Let E be an n× n elementary matrix.

a. If E results from interchanging two rows of In, then det(E) = −1.

b. If E results from multiplying one row of In by k, then det(E) = k.

c. If E results from adding a multiple of row of In to another row, then det(E) = 1.

Proof: Since det(In) = 1, applying (b), (d), and (f) of Theorem 4.3 immediately gives (a), (b),
and (c), respectively.

Lemma 4.5: Since that multiplying a matrix B by an elementary matrix on the left performs
the corresponding elementary row operation of B. We can rephrase (b), (d), and (f) of Theorem
4.3 by det(EB)=(detE)(detB).

Theorem 4.6: A square matrix A is invertible if and only if detA 6= 0.
Proof: Let A be an n × n matrix and let R be the reduced row echelon form of A, i.e.
Er · · ·E1A = R. By taking determinant and applying Lemma 4.5, we get (detEr) · · · (detE1)(detA) =
(detR). By Theorem 4.4, the determinants detEi are nonzero for all i = 1, · · · , r. Then,
detA 6= 0 if and only if detR 6= 0.
Now suppose that A is invertible. Then, by the FT of IM, R = In, so detR = 1 6= 0. Hence,
detA 6= 0 also.
Conversely, if detA 6= 0, then detR 6= 0, then R cannot contain a zero row by Theorem 4.3.a.
It follows that R must be In, so A is invertible, by the FT.

Determinants and Matrix Operations

This section is about to determine relationships between determinants and some of the basic
matrix operations.

Theorem 4.7: If A is an n× n matrix, then

det(kA) = kn detA (17)

Proof: Exercise 44.

Theorem 4.8: If A and B are n× n matrices, then

det(AB) = (detA)(detB) (18)

Proof: See book, pag. 272.

Theorem 4.9: If A is invertible, then

det(A−1) =
1

detA
(19)

Proof: See book, pag. 273.

Theorem 4.10: For any square matrix A,

det(A) = detAT (20)

Proof: Since the rows of AT are the columns of A evaluating detAT by expanding along the
first row is identical to evaluating detA by expanding along its first column.
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Cramer’s Rule and the Adjoint

The Cramer’s Rule gives a formula for describing the solution of certain systems of n linear
equations in n variables entirely in terms of determinants.

Theorem 4.11: Cramer’s Rule. Let A be an invertible n× n matrix and let b̄ be a vector
in R

n. Then the unique solution x̄ of the system Ax̄ = b̄ is given by

xi =
det(Ai(b̄))

detA
(21)

for i = 1, · · · , n and Ai(b̄) the matrix obtained by replacing the ith column of A by b̄, i.e.
Ai(b̄) = [ā1 · · · āi−1 b̄ āi+1 · · · ān].
Proof: See book, pag. 274.

Example 4.16: Para trabajar en clase: Let us check that the solution of the following LSE

x1 + 2x2 = 2 (22)

−x1 + 4x2 = 1 (23)

is x1 = 1, x2 = 0.5, by using the Cramer’s Rule.

Theorem 4.12: Let A be an invertible n× n matrix. Then

A−1 =
1

detA
adjA (24)

where adjA the so called adjoint matrix of A, defined as [Cji] = [Cij]
T , where [Cij] is a matriz

with elements Cij, with Cij the co-factors defined in Eq. (13).
Proof: See book, pag. 275.

Example 4.17 Calculates the inverse of the matrix A using the adjoint matrix, with A =




1 2 −1
2 2 4
1 3 −3





Solution: the determinant is 2, the cofactors are

C11 = −18 (25)

C12 = 10 (26)

C13 = 4 (27)

C21 = 10 (28)

C22 = −2 (29)

C23 = −1 (30)

C31 = 10 (31)

C32 = −6 (32)

C33 = −2 (33)

then

A−1 =
1

detA
adjA =

1

2





−18 10 4
3 −2 −1
10 −6 −2





T

=





9 −3

2
−5

−5 1 3
−2 1

2
1



 (34)

Compare this result with example 3.30
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Lemma 4.13: Let A be an n× n matrix. Then

n
∑

i=1

a1iC1i = detA =

n
∑

i=1

ai1Ci1 (35)

Lemma 4.14: Let A be an n × n matrix and let B be obtained by interchanging any two
rows (columns) of A. Then

detB = −detA (36)

Eigenvalues and Eigenvectors of n× n Matrices

The eigenvalues of a square matrix A are precisely the solutions λ of the equation

det(A− λI) = 0 (37)

Characteristic polynomial/equation: When we expand det(A−λI), we get a polynomial
in λ, called the characteristic polynomial of A. The equation det(A − λI) = 0 is called the
characteristic equation of A.

• If A is n× n, its characteristic polynomial will be of degree n.

• According to the Fundamental Theorem of Algebra (Theorem D.4 of the Appendix D of
the book, pag. 668), a polynomial of degree n with real or complex coefficients has at
most n distinct roots.

• Then an n× n matrix with real or complex entries has at most n distinct eigenvalues.

Example 4.18: Find the eigenvalues and the corresponding eigenspaces of the matrix A,

with A =





0 1 0
0 0 1
2 −5 4



.

First we calculates the eigenvalues from det(A− λI). We should get

−λ3 + 4λ2 − 5λ+ 2 = 0 (38)

Using the Rational Roots Theorem (Theorem D.3 in page 665 in theAppendix D of the book)
we get λ1 = λ2 = 1 and λ3 = 2.

Some details about the Rational Roots Theorem: Let f(x) = anx
n + · · · + a1x + a0 be a

polynomial with integer coefficients and a/b be a rational number. If a/b is a zero of f(x), then
a0 is a multiple of a and an is a multiple of b. In our case we would have

2 = ka (39)

−1 = k′b (40)

the values for k and k′ which give a and b integers are k = 1, 2 and k′ = 1. Then the possible
values of a which are multiples of a0 are a = ±2,±1. While for b = ±1. Then, the possible
roots of (38) of the form a/b are

a

b
= ±2,±1 (41)

The next step is just try each one of the a/b possibility.
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Second we find the eigenvectors by finding the null space of the matrix A − λiI for each
eigenvalue.

Using row reduction for λ = 1 we get

[A− I|0̄] =





−1 1 0 0
0 −1 1 0
2 −5 3 0



 →





1 0 −1 0
0 1 −1 0
0 0 0 0



 (42)

Then,
x1 − x3 = 0
x2 − x3 = 0

(43)

Then, the eigenvectors ū for λ = 1 are

ū =





t
t
t



 (44)

with t in R.
The eigenspase E1 is

E1 =







t





1
1
1











= span









1
1
1







 (45)

Similarly for λ = 2 we get

[A− 2I|0̄] =





−2 1 0 0
0 −2 1 0
2 −5 2 0



 →





1 0 −1

4
0

0 1 −1

2
0

0 0 0 0



 (46)

Then,
x1 −

1

4
x3 = 0

x2 −
1

2
x3 = 0

(47)

Then, the eigenvectors v̄ for λ = 2 are

v̄ =





1

4
t

1

2
t
t



 (48)

with t in R.
The eigenspase E3 is

E3 =







t





1

4
1

2

1











= span









1
2
4







 (49)

Algebraic multiplicity: The algebraic multiplicity of an eigenvalue is the multiplicity as a
root of the characteristic equation. Thus, λ = 1 has algebraic multiplicity 2 and λ = 2 has
algebraic multiplicity 1: (λ− 1)2(λ− 2).

Geometric multiplicity: The geometric multiplicity of an eigenvalue λ is the dimension of
its eigenspace, i.e. dim(Eλ).
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Exercise for the student in class (Example 4.19): Find all of the eigenvalues and the

corresponding eigenvectors of the matrix A =





−1 0 1
3 0 −3
1 0 −1



.

Solution:

• λ1 = λ2 = 0, span









0
1
0



 ,





1
0
1









Notice that any linear combination of eigenvectors {v̄1, · · · , v̄k} of a given eigenspace Eλ

is also an eigenvector of the matrix A with the same eigenvalue λ, since

Ax̄ = A(c1v̄1 + · · ·+ ckv̄k) (50)

= c1Av̄1 + · · ·+ ckAv̄k (51)

= c1λv̄1 + · · ·+ ckλv̄k (52)

= λ(c1v̄1 + · · ·+ ckv̄k) (53)

Ax̄ = λx̄ (54)

• λ3 = −2, span









−1
3
1









In terms of the multiplicity we have

• The algebraic multiplicity of λ = 0 is 2 and its geometric multiplicity is also 2.

• The algebraic multiplicity of λ = −2 is 1 and its geometric multiplicity is also 1.

Theorem 4.15: The eigenvalues of a triangular matrix are the entries on its main diagonal.

Theorem 4.16: A square matrix A is invertible if and only if 0 is not an eigenvalue of A.
Proof: Let A be a square matrix. By Theorem 4.6, A is invertible if and only if detA 6= 0. But
detA 6= 0 is equivalent to det(A− 0I) 6= 0, which says that 0 is not a root of the characteristic
equation of A, i.e. 0 is not and eigenvalue of A.

Theorem 4.17: Fundamental Theorem (FT) of Invertible Matrices. Version 3 of 5
Let A be an n× n matrix. The following statements are equivalent:

From Version 1

a. A is invertible.

b. Ax̄ = b̄ has a unique solution for every b̄ in R
n.

c. Ax̄ = 0 has only the trivial solution.

d. The reduced row echelon form of A is In.

e. A is a product of elementary matrices.

From Version 2

f. rank(A)=n
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g. nullity(A)=0

h. The column vectors of A are LI

i. The column vectors of A span R
n

j. The column vectors of A form a basis for Rn

k. The row vectors of A are LI

l. The row vectors of A span R
n

m. The row vectors of A form a basis for Rn

New statements

n. detA 6= 0

o. 0 is not an eigenvalue of A

Proof: The equivalence (a)⇔(n) is Theorem 4.6. Theorem 4.16 proves (a)⇔(o).

Theorem 4.18: Let A be a square matrix with eigenvalue λ and corresponding eigenvector
x̄.

a. For any positive integer n, λn is an eigenvalue of An with corresponding eigenvector x̄.

b. If A is invertible, then 1/λ is an eigenvalue of A−1 with corresponding eigenvector x̄.

c. For any integer n (la diferencia con el punto (a) es que ped́ıa que n sea positivo), λn is an
eigenvalue of An with corresponding eigenvector x̄.

Proof: See book, pag. 293.

Application of the theorem 4.18: Calculate the action of A3 in the vector ū with, A =
[

0 1
2 1

]

and ū =

[

5
1

]

.

The strategy consist in expanding the vector ū in the basis (if it exist) generated by the
eigenspaces of the eigenvalues of A.

Then, we first calculate the eigenvalues and get λ1 = −1 and λ2 = 2, with eigenvectors

v̄1 =

[

1
−1

]

and v̄2 =

[

1
2

]

, respectively.

Next, we express the given vector ū as linear combination of the eigenvectors v̄1 and v̄2:

ū = c1v̄1 + c2v̄2 (55)

which gives for the coefficients: c1 = 3 and c2 = 2.
Finally, we apply the matrix A3 and use the fact that it is a linear operator and that v̄i are

eigenvectors of A,

A3ū = A3(3v̄1) + A3(2v̄2) (56)

= 3λ3
1v̄1 + 2λ3

1v̄2 (57)

= 3(−1)3v̄1 + 2(2)3v̄2 (58)

= −3v̄1 + 16v̄2 (59)

= −3

[

1
−1

]

+ 16

[

1
2

]

(60)

=

[

13
35

]

(61)
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This result should be the same that the one obtained by multiplying three times the matrix A
with it self and the resulting matrix multiplied by the vector ū. Check it!. You will need the
explicit matrix A3 below.

Theorem 4.19: Suppose the n× n matrix A has eigenvectors v̄1, · · · , v̄m with corresponding
eigenvalues λ1, · · · , λm. If x̄ is a vector in R

n that can be expressed as a linear combination of
these eigenvectors,

x̄ = c1v̄1 + · · ·+ cmv̄m (62)

then, for any integer k,
Akx̄ = c1λ

k
1 v̄1 + · · ·+ cmλ

k
mv̄m (63)

Theorem 4.20: Let A be an n × n matrix and let λ1, · · · , λm be distinct eigenvalues of A
with corresponding eigenvectors v̄1, · · · , v̄m. Then v̄1, · · · , v̄m are LI.
Proof: See book, pag. 295.

Similarity and Diagonalization

Triangular and diagonal matrices expose their eigenvalues explicitly. We wish to relate a given
matrix with its triangular or diagonal form. Since the Gauss elimination does not preserve the
eigenvalue of the matrix another procedure is called for. This is the goal of this section.

Similar Matrices

Let A and B be n × n matrices. We say that A is similar to B if there is an invertible n × n
matrix P such that

P−1AP = B (64)

and write
A ∼ B (65)

Remarks:

• If A ∼ B, we can write, equivalently, that A = PBP−1 or AP = PB.

• Similarity is a relation on square matrices.

• There is a direction (or order) implicit in the definition of similarity. We should not assume
that A ∼ B implies B ∼ A (even when it is true) since it does not follow immediately
from the definition.

• The matrix P depends on A and B.

• The matrix P is not unique for a given pair of similar matrices A and B. For example,
if A = B = I then I ∼ I for any invertible matrix P , because P−1IP = P−1P = I.

Theorem 4.21: Equivalence relation. Any relation satisfying the following three proper-
ties is called an equivalence relation. Let A, B and C be n× n matrices,

a. A ∼ A

b. If A ∼ B, then B ∼ A.
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c. If A ∼ B and B ∼ C, then A ∼ C.

Proof:

a. I−1AI = A

b. If A ∼ B, then P−1AP = B ⇒ A = PBP−1. Let us renamed Q = P−1, then Q−1BQ = A,
so B ∼ A.

c. Exercise 30.

Theorem 4.22: Let A and B be n× n matrices with A ∼ B. Then

a. detA = detB

b. A is invertible if and only if B is invertible.

c. A and B have the same rank

d. A and B have the same characteristic polynomial.

e. A and B have the same eigenvalues.

Proof: See book, pag. 299.

Remarks:

1. Two matrices may have properties (a) through (e) (and more) in common and yet still
not be similar.

2. Theorem 4.22 is most useful in showing that two matrices are not similar, since A and B
cannot be similar if any of properties (a) through (e) fails.

Example of the remark 1: Be A =

[

1 0
0 1

]

and B =

[

1 1
0 1

]

:

a. detA = detB = 1

b. A and B both are invertible

c. rankA = rankB = 2

d. The characteristic polynomial of A and B is the same: (1− λ)2

e. The eigenvalues of A and B are the same: λ1 = λ2 = 1

But, P−1AP = P−1P (since A = I), then P−1AP = I 6= B for any invertible matrix P .

Example of the remark 2: The following two matrices have the same determinant and

rank but they have not the same characteristic polynomial. A =

[

1 3
2 2

]

and B =

[

1 1
3 −1

]

:

• Characteristic polynomial of A: λ2 − 3λ− 4.

• Characteristic polynomial of B: λ2 − 4.

Check it!
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Diagonalization

The best possible situation is when a square matrix is similar to a diagonal matrix. Whether
a matrix is diagonalizable is closely related to the eigenvalues and eigenvectors of the matrix.
This is the topic of this section.

An n × n matrix A is diagonalizable if there is a diagonal matrix D such that A ∼ D, i.e.
if there is an invertible n× n matrix P such that P−1AP = D. The entries of the matrices D
and P are related to the eigenvalues and eigenvectors, respectively of A.

Theorem 4.23: Let A be an n× n matrix. Then A is diagonalizable if and only if A has n
linearly independent eigenvectors.
More precisely, there exist an invertible matrix P and a diagonal matrix D such that P−1AP =
D is and only if the columns of P are n LI eigenvectors of A and the diagonal entries of D are
the eigenvalues of A corresponding to the eigenvectors in P in the same order.
Proof: See book, pag. 301.

Example 1 of the Theorem 4.23: The matrix A =





0 1 0
0 0 1
2 −5 4



 has only two LI eigen-

vectors (it was calculate previously, see Example 4.18). Therefore, A is not diagonalizable

Example 2 of the Theorem 4.23: The matrix A =





−1 0 1
3 0 −3
1 0 −1



 has three LI (check

it!) eigenvectors (it was calculate previously, see example 4.19) with eigenvalues λ1 = λ2 = 0
and λ3 = −2:

p̄1 =





0
1
0



 , p̄2 =





1
0
1



 , p̄3 =





−1
3
1



 (66)

If we take

P = [p̄1 p̄2 p̄3] =





0 1 −1
1 0 3
0 1 1



 (67)

then P is invertible (find the inverse!). Furthermore,

P−1AP =





0 0 0
0 0 0
0 0 −2



 =





λ1 0 0
0 λ2 0
0 0 λ3



 = D (68)

About the order in P and D: The eigenvectors can be placed into the columns of P in
any order. However, the eigenvalues will come up on the diagonal of D in the same order as
their corresponding eigenvectors in P .

Theorem 4.24: Let A be an n× n matrix and let λ1, · · · , λk be distinct eigenvalues of A. If
Bi is a basis for the eigenspace Eλi

, then B = B1 ∪ · · · ∪ Bk is LI.
Proff: See book, pag. 303.
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Example of Theorem 4.24: In the ’Example 2 of the Theorem 4.23’ above we were asked
to demonstrate the independence of the three eigenvectors p̄1, p̄2, p̄3. It was unnecessarily since,

• p̄1, p̄2 is a basis for the eigenspace Eλ=0, then they are LI

• p̄3 is a basis for the eigenspace Eλ=−2

• Then, from Theorem 4.24 the vectors which result from the union of Eλ=0 and Eλ=−2 are
LI.

Theorem 4.25: If A is an n×n matrix with n distinct eigenvalues, then A is diagonalizable.
Proof: Let v̄1, · · · , v̄n be eigenvectors corresponding to the n distinct eigenvalues of A. By
Theorem 4.20, v̄1, · · · , v̄n are LI, so, by Theorem 4.23, A is diagonalizable.

Exercise for the student in class: Find the matrix P which transform the matrix A to its

diagonal form, with A =





2 −3 7
0 5 1
0 0 −1





Solution: pending...

Lemma 4.26: If A is an n× n matrix, then the geometric multiplicity of each eigenvalue is
less than or equal to its algebraic multiplicity.
Proof: See book, pag. 304.

Theorem 4.27: The Diagonalization Theorem. Let A be an n×n matrix whose distinct
eigenvalues are λ1, · · · , λk. The following statements are equivalent:

a. A is diagonalizable

b. The union B of the bases of the eigenspaces of A contains n vectors.

c. The algebraic multiplicity of each eigenvalue equals its geometric multiplicity.

Proof: See book, pag. 304.

Example 1 to the Diagonalization Theorem: The matrix A =





0 1 0
0 0 1
2 −5 4



 has two

distinct eigenvalues (see Example 4.18) λ1 = λ2 = 1 and λ3 = 2. Since the algebraic multiplicity
of λ = 1 is 2 while the geometric multiplicity 1 (the eigenspace contain only one vector), the
matrix A is not diagonalizable.

Example 2 to the Diagonalization Theorem: The matrix A =





−1 0 1
3 0 −3
1 0 −1



 has

two distinct eigenvalues (see Example 4.19) λ1 = λ2 = 0 and λ3 = −2.Since the geometric
multiplicity of λ = 0 is also 2 (as its algebraic multiplicity), the eigenvalue λ = −2 has algebraic
and geometric multiplicity 1, the matrix A is diagonalizable.
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Application of the diagonalization P−1AP = D: Let us assume we want a power of a
given matrix A of dimension n, let us say Ak. Let us write

P−1AP = D ⇒ A = PDP−1 (69)

with D diagonal

D =





λ1 0 0
0 λ2 0
0 0 λ3



 (70)

with λi the eigenvalues of A. Then

A2 = (PDP−1)2 = (PDP−1)(PDP−1) = PD2P−1 (71)

in general

Ak = PDkP−1 (72)

with

Dk =





λk
1 0 0
0 λk

2 0
0 0 λk

3



 (73)

Example: Calculates A3 where A =

[

0 1
2 1

]

From some previous calculation we know the eigenvalues and eigenvectors:

• λ1 = −1, v̄1 =

[

1
−1

]

• λ2 = 2, v̄2 =

[

1
2

]

then

P = [v̄1 v̄2] =

[

1 1
−1 2

]

(74)

and (using the Theorem for the inverse of a 2 by 2 matrix)

P−1 =

[

2 −1
1 1

]

(75)

and

D =

[

−1 0
0 2

]

(76)

The application of A3 = PD3P−1 gives,

A3 =

[

1 1
−1 2

] [

(−1)3 0
0 (2)3

] [

2 −1
1 1

]

(77)

= (pending) (78)

Compare the result with the previous calculation of A3.
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Application: exponential of a matrix. By analogy with the power series expansion of
ex = 1 + x+ x2

2!
+ · · · , let us define the exponential of a matrix A in terms of powers of A,

eA = I + A+
A2

2!
+ · · · (79)

with A an square matrix. It can be shown (it is not demostrated in the book) that the series
converges for any real matrix A.

For practical calculation, let us assume that the matrix A is diagonalizable,

P−1AP = D (80)

with D a diagonal matrix, and A = PDP−1, then

eA = I + A+
A2

2!
+

A3

3!
+ · · · (81)

= I + (PDP−1) +
(PDP−1)2

2!
+

(PDP−1)3

3!
+ · · · (82)

= PIP−1 + PDP−1 +
PD2P−1

2!
+

PD3P−1

3!
+ · · · (83)

= P

(

I +D +
D2

2!
+

D3

3!
+ · · ·

)

P−1 (84)

where

Dk =











λk
1 0 · · · 0
0 λk

2 · · · 0
...

...
. . . 0

0 0 · · · λk
n











(85)

then,

eA = P

(

I +D +
D2

2!
+

D3

3!
+ · · ·

)

P−1 (86)

= P





















1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 · · · 1











+











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn











+
1

2!











λ2
1 0 · · · 0
0 λ2

2 · · · 0
...

...
. . . 0

0 0 · · · λ2
n











+
1

3!











λ3
1 0 · · · 0
0 λ3

2 · · · 0
...

...
. . . 0

0 0 · · · λ3
n











+ · · ·











P−1

(87)

eA = P











1 + λ1 +
1

2!
λ2
1 + · · · 0 · · · 0

0 1 + λ2 +
1

2!
λ2
2 + · · · · · · 0

...
...

. . . 0
0 0 · · · 1 + λn +

1

2!
λ2
n + · · ·











P−1

(88)
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eA = P











eλ1 0 · · · 0
0 eλ2 · · · 0
...

...
. . . 0

0 0 · · · eλn











P−1 (89)

where λi are the eigenvalues of A and P is the matrix which has as columns the eigenvectors
of A in the same order as the eigenvalues is the matrix D.
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