
Sistemas de ecuaciones lineales

Credit: This notes are 100% from chapter 2 of the book entitled Linear Algebra. A Modern

Introduction by David Poole. Thomson. Australia. 2006.

Linear equation: a linear equation in the n variables x1, · · · , xn is an equation that can be
written in the form a1x1 + · · ·+ anxn = b where the coefficients a1, · · · , an and the term b are
all constants.

System of linear equations (SLE): a system of linear equations is a finite set of linear
equations, each with the same variables. A solution of a SLE is a vector that is simultaneously
a solution of each equation in the system.

Consistent and inconsistent: a SLE is called consistent if it has at least one solution. A
system with no solutions is called inconsistent. A SLE with real coefficients has either (i) a
unique solution (a consistent system), (ii) infinitely many solutions (a consistent system) or
(iii) no solution (an inconsistent system).

Equivalent: two SLE are called equivalent if they have the same solution set. The general
approach to solving a SLE is to transform the given system into an equivalent one that is easier
to solve.

Coefficients and augmented matrices: there are two important matrices associated with
a SLE. The coefficient matrix contains the coefficients of the variables, and the augmented
matrix is the coefficient matrix augmented by an extra column containing the constant terms.

Back substitution: is the procedure which consist to solve the SLE starting from the last
equation and working backward when the SLE is given in the form

x− y − z = 2 (1)

y + 3z = 5 (2)

5z = 10 (3)

Next we turn to the general strategy for transforming a given system into an equivalent one
that can be solved easily by back substitution. What follow is an example

x− y − z = 2 (4)

3x− 3y + 2z = 16 (5)

2x− y + z = 9 (6)
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We built the extended or augmented matrix, i.e. the matrix of the SLE coefficients and
independent term,





1 −1 −1 2
3 −3 2 16
2 −1 1 9



 (7)

First we eliminate x from the second and third equations: (i) we subtract the second line with
3 times the firs line: f2 − 3f1





1 −1 −1 2
0 0 5 10
2 −1 1 9



 (8)

(ii)next we subtract third line with 2 times the first one: f3 − 2f1




1 −1 −1 2
0 0 5 10
0 1 3 5



 (9)

(iii) next we interchange the second with the third equation f2 → f3




1 −1 −1 2
0 1 3 5
0 0 5 10



 (10)

(iv) we are done. Now we write the SLE with the new coefficients and independent term. This
is an equivalent SLE of the initial one and then they both share the same solution. The solution
is obtained by back substitution.

x− y − z = 2 (11)

y + 3z = 5 (12)

5z = 10 (13)

Row echelon(escalón) form: In solving a linear system, it will no always be possible to
reduce the coefficient matrix to triangular form. However, we can always achieve a staircase
pattern in the nonzero entries of the final matrix. A matrix is row echelon form if it satisfies
the following properties

• Any rows consisting entirely of zeros are at the bottom

• In each nonzero row, the first nonzero entry (called the leading entry) is in a column to
the left of any leading entries below it.

If a matrix in row echelon form is actually the augmented matrix of a linear system, the system
is quite easy to solve by back substitution alone.
The row echelon form of a matrix is not unique (but they are all equivalents).

Elementary row operations: this is a procedure by which any matrix can be reduced
to a matrix in row echelon form. The allowed operations, called elementary row operations,
correspond to the operations that can be performed on a system of linear equations to transform
it into an equivalent system. They are:

• Interchange two rows (Ri ↔ Rj).

• Multiply a row by a nonzero constant (kRi).

• Add a multiple of a row to another row (Ri + kRj).
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Row reduction: the process of applying elementary row operations to bring a matrix into
row echelon form, called row reduction, is used to reduce a matrix to echelon form.

Row equivalent: matrices A and B are row equivalent if there is a sequence of elementary
row operations that converts A into B.

Theorem 2.1: Matrices A and B are row equivalent if and only if they can be reduced to
the same row echelon form.
Proof: If A and B are row equivalent, then further row operations will reduce B (and therefore
A) to the (same) row echelon form.
Conversely, if A and B have the same row echelon form R, then via elementary row operations,
we can convert A into R and B into R. Reversing the latter sequence of operations, we can
convert R into B, and therefore the sequence A → R → B achieves the desired effect.

Gaussian elimination: when row reduction is applied to the augmented matrix of a SLE,
we create an equivalent system that can be solved by back substitution. The entire process is
known as Gaussian elimination.

Rank: the rank, rank(A), of a matrix A is the number of nonzero rows in its row echelon
form.

Theorem 2.2: The Rank Theorem Let A be the coefficient matrix of a SLE with n
variables. If the system is consistent, then number of free variables = n− rank(A)

• If n− rank(A) = 0 there are no free variables and there is a unique solution.

• If rank(A) 6= rank(A|b) the system is inconsistent, i.e. it has not solution. Example




1 −1 2 3
1 2 −1 −3
0 2 −2 1



 →





1 −1 2 3
0 1 −1 −2
0 0 0 5





Reduce row echelon: a modification of Gaussian elimination greatly simplifies the back
substitution phase. This variant is known as Gauss-Jordan elimination, relies on reducing the
augmented matrix even further. A matrix is in reduced row echelon form if:

• It is in row echelon form.

• The leading entry in each nonzero row is 1 (called a leading 1)

• Each column containing a leading 1 has zeros everywhere else.

Unlike the row echelon form, the reduced row echelon form of a matrix is unique.

Homogeneous systems: a system of linear equations is called homogeneous if the constant
term in each equation is zero. A homogeneous system will have either a unique solution (namely,
the zero, or trivial, solution) or infinitely many solutions.
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Theorem 2.3: If [A|0] is a homogeneous system of m linear equations with n variables, where
m < n, the system has infinitely many solutions.
Proof: Since the system has at least the zero solution, it is consistent. Also rank(A)≤ m.
Then by the rank theorem, we have

number of free variables = n− rank(A) ≥ n−m > 0 (14)

then, there is at least one free variable and, hence, infinitely many solutions.
The theorem 2.3 says nothing about the case where m ≥ n. Exercise 44 asks you to give

examples to show that, in this case, there can be either a unique solution of infinitely many
solutions.

Theorem 2.4: A system of linear equations with augmented matrix [A|b̄] is consistent if and
only if b̄ is a linear combination of the column of A.

Span: If S = {v̄1, · · · , v̄k} is a set of vectors in R
n, the set of all linear combinations of

v̄1, · · · , v̄k is called the span of v̄1, · · · , v̄k and is denoted by span(v̄1, · · · , v̄k) or span(S)=R
n,

then S is called a spanning set for Rn.
Example: R

2 = span(v̄1, v̄2) with

v̄1 =

[

2
−1

]

(15)

v̄2 =

[

1
3

]

(16)

We have to show that an arbitrary vector

[

a
b

]

can be written as a linear combination of v̄1

and v̄2, i.e. exist c1 and c2 such that c1

[

2
−1

]

+ c2

[

1
3

]

=

[

a
b

]

for any a and b.

Built the augmented matrix and reduce to the equivalent echelon row and use back substitution
to get the following values for c1 and c2

c1 =
3a− b

7
(17)

c2 =
a + 2b

7
(18)

Linearly dependent (LD): A set of vectors v̄1, · · · , v̄k is linearly dependent if there are
scalars c1, · · · , ck at least one of which is not zero, such that

c1 v̄1 ++ck v̄k = 0̄ (19)

Any set of vectors containing the zero vector is LD, since for if 0̄, v̄2, · · · , v̄m are in R
m, then

we can find a nontrivial combination of the form c10̄ + c2v̄2 + · · ·+ cmv̄m = 0 by setting c1 = 1
and c2 = · · · = cm = 0.

Linearly independent (LI): A set of vectors v̄1, · · · , v̄k that is not linearly dependent is
called linearly independent.
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Theorem 2.5: Vectors v̄1, · · · , v̄m in R
n are LD if and only if at least one of the vectors can

be expressed as a linear combination of the others.
Proof: If one of the vectors, let as say v̄1 is a linear combination of the others, then there are
scalars c2, · · · , cm such that v̄1 = c2 v̄2 + · · ·+ cm v̄m. Rearranging, we obtain v̄1 − c2 v̄2 − · · · −
cm v̄m = 0, which implies that v̄1, · · · , v̄m are LD, since at least one of the scalar (the coefficient
c1 = 1 of v̄1) is nonzero.
Conversely, suppose that v̄1, · · · , v̄m are LD. Then there are scalars c1, · · · , cm, not all zero,
such that c1 v̄1 + c2 v̄2 + · · ·+ cm v̄m = 0. Suppose c1 6= 0. Then

c1 v̄1 = −c2 v̄2 − · · · − cm v̄m (20)

and we may multiply both side by 1/c1 to obtain v̄1 as a linear combination of the others
vectors:

v̄1 = −
c2
c1

v̄2 − · · · −
cm
c1

v̄m (21)

We have taken as a reference the vector v̄1 but this is valid for any other vector as well.

Theorem 2.6: Let v̄1, · · · , v̄m be (column) vectors in R
n and let A be the n × m matrix

[v̄1, · · · , v̄m] with this vectors as its columns. Then v̄1, · · · , v̄m are LD if and only if the homo-
geneous linear system with augmented matrix [A|0̄] has a nontrivial solution.
Proof: v̄1, · · · , v̄m are LD if and only if there are scalars c1, · · · , cm, not all zero, such that
c1v̄1 + · · · + cmv̄m = 0. By the theorem 2.4, this is equivalent to say that the nonzero vector






c1
...
cm






is a (non trivial) solution of the system whose augmented matrix is [v̄1, · · · , v̄m|0̄].

Theorem 2.7: Let v̄1, · · · , v̄m be (row) vectors in R
n and let A be the m×n matrix







v̄1
...
v̄m







with this vectors as its rows. Then v̄1, · · · , v̄m are LD if and only if the rank(A)< m.
Proof: Assume that v̄1, · · · , v̄m are LD. Then, at least one of the vectors can be written
as a linear combination of the others. We relabel the vectors, if necessary, so that we can
write v̄m = c1v̄1 + · · · + cm−1v̄m−1. Then the elementary row operations Rm − c1R1, Rm −
c2R2, · · · , Rm − cm−1Rm−1 applied to A will create a zero row in row m. Thus, rank(A)< m.
Conversely, assume that rank(A)< m. Then there is some sequence of row operations that will
create a zero row. A successive substitution argument analogous to that used in Example 2.25
can be used to show that 0̄ is a nontrivial linear combination of v̄1, · · · , v̄m. Thus, v̄1, · · · , v̄m
are LD.

Theorem 2.8: Any set of m vectors in R
n is LD if m > n.

Proof: Assume that v̄1, · · · , v̄m be (column) vectors in R
n and A be the n × m matrix

[v̄1, · · · , v̄m] with these vectors as its columns. By Theorem 2.6 v̄1, · · · , v̄m are LD if and
only if the homogeneous linear system with augmented matrix [A|0̄] has a nontrivial solution.
But, according to Theorem 2.6, this will always be the case if A has more columns that rows;
it is the case here, since number of columns m is greater than numbers of rows n.
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